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Abstract

One of the central problems in the semantics of derived words is polysemy (see,
for example, the recent contributions by Lieber 2016 and Plag et al. 2017). In this
paper, we tackle the problem of disambiguating newly derived words in context by
applying Distributional Semantics (Firth 1957) to deverbal -ment nominalizations
(e.g., bedragglement, emplacement).

We collected a dataset containing contexts of low frequency deverbal -ment nomi-
nalizations (55 types, 406 tokens) extracted from large corpora such as the Corpus of
Contemporary American English. We chose low frequency derivatives because high
frequency formations are often lexicalized and thus tend to not exhibit the kind of
polysemous readings we are interested in. Furthermore, disambiguating low-frequency
words presents an especially difficult task because there is little to no prior knowledge
about these words from which their semantic properties can be extrapolated.

The data was manually annotated according to eventive vs. non-eventive inter-
pretations, allowing also an ‘ambiguous’ label in those cases where the context did
not disambiguate. Our question then was to what extent, and under which condi-
tions, context-derived representations such as those of Distributional Semantics can
be successfully employed in the disambiguation of low-frequency derivatives.

Our results show that, first, our models are able to distinguish between eventive
and non-eventive readings with some success. Second, very small context windows
are sufficient to find the intended interpretation in the majority of cases. Third,
ambiguous instances tend to be classified as events. Fourth, the performance of the
classifier differed for different subcategories of nouns, with non-eventive derivatives
being harder to classify correctly. We present indirect evidence that this is due to the
semantic similarity of abstract non-eventive nouns to eventive nouns. Overall, this
paper demonstrates that distributional semantic models can be fruitfully employed
for the disambiguation of low frequency words in spite of the scarcity of available
contextual information.

[Acknowledgements to be added]
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1 Introduction

In many languages polysemy in word-formation is all-pervasive (e.g. Rainer 2014). Bauer
et al. (2013), Kawaletz and Plag (2015, 291), Lieber (2016, 18f), for example, come up with
lists of readings available to English deverbal nominalizations involving the suffixes -ing,
-ation, -ment, -ance/-ence, -th and conversion, similar as the one given in table 1. Other
languages show similar patterns of polysemy, for example French (Uth 2011; Fradin 2011,
2012a,b), or German (Roßdeutscher and Kamp 2010; Roßdeutscher 2010).

Table 1: Readings of English nominalizations

Semantic category paraphrase examples
Event ‘the event of V-ing’ production, training
Result ‘the outcome of V-ing’ acceptance, alteration
Product ‘the thing that is created by V-ing’ pavement, growth
Instrument ‘the thing that V-s’ seasoning, advertisement
Location ‘the place of V-ing’ dump, residence
Agent ‘people or person who V-s’ administration, cook
Measure ‘how much is V-ed’ pinch, deceleration
Path ‘the direction of V-ing’ decline, direction
Patient ‘the thing affected or moved by V-ing’ catch, acquisition
State ‘the state of V-ing or being V-ed’ alienation, disappointment
Instance ‘an instance of V-ing’ belch, cuddle

Given the variety of interpretations that derivatives of a given affix can give rise to,
how do listeners find the right reading? This is not a trivial task, especially if we consider
derivatives that are newly coined, or so infrequent that it is highly unlikely that listeners
have stored available readings for these forms. And even if they do, a given form still can
have different stored readings. Thus it seems that the context in which a given form occurs
must provide the necessary cues that help listeners to come up with the reading that is
actually intended by their interlocutor who uses the word.

In her recent book on nominalizations Lieber (2016, 8) formalizes the work of the context
in deriving a particular reading as ‘Contextual Coercion’, “by which specific readings of
those words are realized in specific syntactic contexts”. The notion of Contextual Coercion
is very similar to Pustejovsky’s ‘accomodation subtyping’ (Pustejovsky 2011, 1411). In this
view an inherently underspecified or unspecified semantic feature (for example [material])
is fixed to one value (for example [+material]) on the basis of other information available
in the syntactic context. Let us use an example from Lieber (2016, 122ff) for illustration.
The example is taken from the Corpus of Contemporary American English (COCA, Davies
2008), emphasis ours.
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(1) The Guggenheim, considered the generator of 80 percent of Bilbao’s 1 million annual
tourists (Calvo 2001b), provided President Fraga with an example of a successful
construction that helped to remake a city’s image. (COCA ACAD 2012)

In this case, encyclopedic knowledge and the definite article tells the reader that The
Guggenheim refers to a museum, which, via Contextual Coercion, leads to the inference
that construction must be concrete and inanimate, which fixes the value of the feature
[material] to [+material]. It should be noted, however, that an alternative interpretation
(not mentioned by Lieber) still seems possible. Thus a city’s image can not only be remade
by having a nice new building, but also by successfully building one. For example, the city
of Berlin’s image has seriously suffered from the problems surrounding the construction
(event reading!) of the new airport BER, and a successful construction (event reading!) of
some other building may boost Berlin’s image in this domain.

The example nicely shows that sometimes larger contexts and very specific shared
knowledge may need to be fed into the construal or disambiguation of the meaning of pol-
ysemous derivatives. If such knowledge is not available or not clearly alluded to, listeners
and readers may be stuck with ambiguous or underspecified meanings. The literature (e.g.
Bauer et al. 2013; Lieber 2016; Andreou 2017) often discusses individual cases of disam-
biguation, but it is currently unclear to what extent, across many derivatives and contexts,
the syntactic context of derived words actually helps to disambiguate a given derivative.

There is also a more general theoretical problem involved in approaching the interpreta-
tion of complex words that we have glossed over so far, i.e. what we mean more specifically
by ‘disambiguation’. Do we mean the selection of a particular meaning among some lexi-
cally listed meanings? Or the construal of one particular reading on the basis of different
sources of information? Especially with regard to morphologically derived words, this is
a vexed issue, since the interplay between affix and base may sometimes lead to lexically
fixed possibilities of meaning (especially with established derivatives), and may sometimes
necessarily involve the construal of meanings based on the semantic representations of base
and affix (especially with novel forms). This problem will be discussed in more detail in
section 2. For the purposes of our study a broad notion of disambiguation as ‘finding the
right reading’ is used which allows for both possibilities mentioned.

In this paper, we empirically explore, for words derived with the suffix -ment in English,
to what extent syntactic contexts provide the necessary cues for disambiguation. We will do
so for newly derived and rare derivatives, for which readers and listeners do not have fixed
meanings available. These cases are especially interesting because they necessarily involve
the construal of meaning instead of retrieving attested interpretations for whole words from
the mental lexicon. At the same time, this makes disambiguation an even harder task.

For our exploration, we adopt a corpus-based methodology developed to deal with
meaning in context, Distributional Semantics (Firth 1957; Miller and Charles 1991; Schütze
1998). In this approach, the meaning of a word is represented as a vector which mathe-
matically expresses the co-occurrences of this word with very many other words in a given
corpus (see Section 5.1 for details and explanation). Distributional Semantics has been
used successfully to model various aspects of lexical semantics. However, in the domain
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of morphological derivation there is only little work using distributional semantic tools.
For example, Cotterell and Schütze (2017) is a general attempt to use vector semantics
for morphological segmentation, Kisselew et al. (2016) employ Distributional Semantics to
determine the directionality of conversion, some scholars (e.g. Marelli 2015) investigated
the transparency of morphological categories, or the semantic differences between certain
suffixes (Varvara, 2017). To our knowledge, the present paper is the first distributional
semantic approach to tackle the problem of disambiguation of newly derived words.

Focusing on only two readings, eventive and non-eventive, we used distributional
semantic models to predict the interpretations of a sample of newly derived -ment deriva-
tives in their sentential context (55 types, 406 tokens from COCA). We then compared the
predicted interpretations with the interpretations that we had annotated manually.

The paper is structured as follows. In the next section we will clarify the notion of
disambiguation to set the theoretical scene for our investigation. Section 3 lays out our task,
and section 4 introduces the data set and coding. Section 5 introduces our distributional
semantic tools and their implementation, followed in section 6 by the presentation of the
results. The final section summarizes and discusses our results.

2 Ambiguity, disambiguation and the construal of mean-

ing

One of the central problems in the study of the semantics of derivation is ambiguity. That
is, derived formations can be interpreted in more than one way (Rainer, 2014; Szymanek,
2013; Lieber, 2016; Plag and Balling, 2017; Andreou, 2017). There are several kinds of
ambiguity that relate to the internal structure of derived words, to lexicalization, or to
contextual factors.

One kind of ambiguity is structural in nature and arises through the possibility of
assigning two different internal hierarchical structures to the same string. This is called
‘structural ambiguity’ (e.g. Szymanek 2013) or ‘compositional ambiguity’ (e.g. Löbner 2013,
48). For instance, the derived word unlockable may be interpreted in two ways depending
on the internal hierarchical structure one ascribes to it. In particular, the bracketing in
(2-a) derives the reading ‘which cannot be locked’, whereas the bracketing in (2-b) gives
rise to the reading ‘which can be unlocked’. (2-c) gives a syntactic example (in which it is
not clear who has the telescope).

(2) a. [un-[[lock]-able]]
b. [un-[lock]]-able]
c. I saw the man with a telescope.

In this paper we do not address structural ambiguity.
Another kind of ambiguity relates to the semantic representation of lexical items and

is often called ‘lexical ambiguity. This type of ambiguity comprises two major sub-types,
‘homonymy’ and ‘polysemy’. In cases of homonymy, two lexemes share all properties (e.g.
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sound form and grammatical category) but have unrelated meanings. Thus, cases such as
bank1 ‘a financial establishment’ and bank2 ‘edge of a river’ (paraphrases taken from the
Oxford English Dictionary) are considered as distinct entries in the lexicon. In contrast
to homonymy, in which different readings of the same form are attributed to different
lexemes, in polysemy, the various readings are considered as variants of the same lexeme.
Consider, for example, the derived government. It has a number of readings including ‘the
continuous exercise of authority over a person, group, etc.’, ‘a period of rule’, and ‘the
body of people charged with the duty of governing’ (paraphrases taken from the OED).
Crucially, all readings are interrelated and considered as variants of the same lexeme,
namely government.

Finally, ambiguity arises with the use of lexemes in context (Asher, 2011; Lieber, 2016;
Andreou, 2017). The context may eliminate particular readings of a lexeme, or modify
its meaning. In the case of meaning modification, the context enriches the meaning of a
lexeme and triggers meaning shifts. This is often referred to as ‘coercion’. The context, for
example, may cause a lexeme to be interpreted metonymically or metaphorically.

Verbs may determine the meaning of the nouns that head their complements through
selectional preference and vice versa (‘co-composition’, Pustejovsky 1995). For instance, in
bake the cake the verb bake is interpreted as a verb of creation, whereas in bake the potato as
a change of state verb. In other cases, referred to as ‘co-predication’ (Asher, 2011), not just
one but both senses of a polysemous word are selected in the same utterance. Consider the
sentence Lunch was delicious but it took forever : both the object and the eventive reading
of lunch are selected in the same sentence.

Such examples of coercion or co-composition bring a further element into our disam-
biguation picture, which will be crucial throughout our study, namely the need of a pre-
established set of senses to which the disambiguation target can be assigned. Whether one
defines such senses as ‘types’ as in Pustejovsky (1995), or as ‘aspects’ (see Asher 2011),
the introduction of a sense inventory allows the researcher to model the contextual dy-
namics of disambiguation in a more constrained way. Additionally, taking the perspective
of disambiguation within a sense inventory uncovers a fundamental feature of polysemy:
its systematicity. Some nouns (defined ‘dot-types’or ‘dual aspect’), come with a specified
pairing of meanings (e.g., book as both object and piece of information) and in some con-
texts, crucially, both these meanings are selected at the same time. In John read the book
the action of reading applies to both the object and the communication, as opposed to The
book fell, in which only the object type is selected.

A basic difference between contextual ambiguity and polysemy is that in contextual
ambiguity the various readings are not necessarily lexically stored but may be construed
online. The distinction between contextual ambiguity and polysemy is fuzzy and, more
often than not, a metonymical or metaphorical reading of a lexeme may be stored in the
lexicon. This is, for example, the case with government in which various readings that are
linked by meaning shift mechanisms such as metonymy were lexicalized and, thus, stored
as meaning variants of the lexeme in question.

The problem of disambiguation is particularly salient in derived words since the in-
creased number of meaningful elements and their interaction opens up even more possi-
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bilities of interpretation than it is the case with monomorphemic words. For illustration
consider the interpretation of prefixal negation with un-. A pertinent form, un-diva, is given
with its context in (3).

(3) Dawn Upshaw has been called the “un-diva” of the opera world, often preferring
to perform innovative, relatively obscure works that emphasize words over music in
an informal style, often - imagine this - even chatting with an audience at recitals.
(COCA SPOK 1994)

Dawn Upshaw, “the un-diva of the opera world”, is actually a diva who breaks down the
stereotype for the category diva. Thus, she is not a stereotypical member of the category
diva. In (3), the use of the prefix un- with diva informs us that the derived word has a
flavor of negativity, but it is not until the derived un-diva is embedded into the particular
context in (3) that its reading is fixed. In particular, contextual cues such as “preferring
to perform innovative, relatively obscure works that emphasize words over music in an
informal style”, and “even chatting with an audience” modify and enrich the meaning of
the derived word un-diva.

This means that in (3), two kinds of ambiguity co-exist. First, there is the ambiguity of
the prefix un-. This prefix has a number of readings. It may give rise to contrary and con-
tradictory readings on adjectives (e.g. unfriendly, undeniable) and reversative readings on
verbs (e.g. unlock). On nouns it derives stereotype negation and general negative readings.
If one opts for a polysemous analysis of all these readings, then the various readings are
treated as variants of the same prefix. If one opts for an analysis based on homonymy, then
the various readings are attributed to more than one un- prefix. In any case, the interaction
of the prefix with its base narrows down the range of possible interpretations.

The second kind of ambiguity is contextual in nature. It is the context that enriches the
meaning of un-diva and guides us towards the right interpretation, i.e. stereotype negation
instead of general negation (see Andreou 2017 for a discussion of stereotype negation).

Given these problems in interpreting derived words, one would like to know how ex-
actly the context feeds into the interpretation of newly derived words. The literature on
derivational semantics often discusses individual cases (see Bauer et al. 2013; Lieber 2016
for many examples), but there is no study available that investigates the problem on a
more systematic empirical basis. This is the aim of the present paper.

3 Disambiguating -ment derivatives in context

The crucial assumption behind our approach is that the context reduces the number of
possible readings by eliminating certain readings and, quite often but not necessarily, forces
one reading for a given lexeme. This means that the various readings of an ambiguous
lexeme appear in different types of context. Let us illustrate this with the monomorphemic
lexeme window in (4), for which the OED lists more than 20 different interrelated meaning
variants.
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(4) a. They can say all they want, that this shows a lot of people are interested. But
they’ve got a very short window here, a couple of months. And if they don’t
get the 7 million people, including a large number of healthy people, this system
will not work. (COCA SPOK 2013)

b. I clicked the SUBMIT button. Nothing happened. Not at first. The program
opened a new window and a message appeared across the top. (COCA FIC
2015)

c. He has no dog in the fight and can’t understand why the city would tear it
down. “They are harassing poor people about putting on a new window - well
a new window is a big project,” he said. Blanchard knows people who were
forced to sell because they couldn’t keep up with Pagedale’s code. (COCA
NEWS 2015)

As evident in the examples in (4), the meaning variants of window may appear in different
types of contexts. Thus, based on the contextual information “a couple of months”, we
infer that the meaning variant of window that appears in (4-a) relates to time, and can be
paraphrased as ‘an interval of time which affords an opportunity to perform a particular
action, or within which a particular action must be performed’. In (4-b), several contextual
cues such as “clicked the SUBMIT button” and “the programm opened” relate to com-
puting, and force the reading ‘a rectangular, typically framed area of the display screen
that is produced by a graphical user interface in order to display information, an image,
or an interface for an application.’ Finally, the contextual information “tear it down” and
“putting on” in (4-c) guide us towards the reading ‘an opening in the wall or roof of a
building, for admitting light or air and allowing people to see out; ... the glazed frame
intended to fit such an opening’.

As pointed out in section 2, the issue of ambiguity is particularly relevant for words
that result from the application of a derivational process to a base. The role of the base in
creating multiple meanings is, however, not restricted to potential consequences of base pol-
ysemy. The semantic representation of the base itself may also be the source of competing
interpretations. This can be nicely explained in terms of referential shifts (Löbner 2013).
Derivational semantics can be conceptualized as meaning shifts in semantic representations
(e.g. Kawaletz and Plag 2015). In particular, reference is shifted from the original referent
of the base to a new referent of the derivative. For example, in the case of agentive -er
formations reference can be shifted from the event (expressed by the verb) to the subject
argument of the verb, or to other entities involved in the event (e.g. its location, as in diner,
or an instrument, as in printer). For -ment, it has been shown that such shifts away from
the verbal eventive interpretation can target, for example, the stimulus argument or the
result state in the case of psych verbs (Kawaletz and Plag 2015). Other types of verb may
have other kinds of semantic entities to which reference can shift, e.g. the patient in the
result state (Plag et al. 2017). In this way, the semantics of the verbal base has an impact
on which readings are possible or likely with -ment forms and which ones are not.

In this paper we will empirically explore the extent to which the context surrounding
newly derived words with the suffix -ment provides the necessary cues for disambiguation.
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The task at hand is particularly difficult because newly derived words are often ambiguous
but listeners do not have stored meaning variants for them.

We focus on two readings, eventive and non-eventive. In the examples below, the
newly derived emplacement in (4-a) has an eventive reading, and bedragglement in (4-b)
has a non-eventive reading.

(5) a. Eventive reading
In many places, emplacement of granite plutons is synchronous to volcanic
eruptions. (Google Website 1995)

b. Non-eventive reading
I set down the scrap of dolls dress, a bedragglement of loose lace hem (COCA
FIC 1999)

As the example of The Guggenheim and construction discussed in (1) has shown, de-
rived words may not always be disambiguated. Thus, they may remain ambiguous between
various readings. In (6), for example, the context surrounding worsenments does not dis-
ambiguate between an eventive and a non-eventive reading.

(6) Ambiguous reading
Yes, in an ideal world the 40D would have improvements over the 30D and no
worsenments. (Google FORUM 2007)

Derivatives in -ment are thus an ideal testing ground for an investigation of the problem
of how derived words can be disambiguated.

4 Data set and coding

4.1 The suffix -ment

The suffix -ment is frequent in contemporary English. This is because it was very productive
in the 15th, 16th and 17th centuries (see Marchand 1969; Lindsay and Aronoff 2013). Today,
many researchers hold it to be unproductive (e.g. Bauer 1983, 2001; Schmid 2011), but
recent corpus studies have shown that numerous novel words can indeed be identified in
large corpora such as COCA (The Corpus of Contemporary American English, Davies
2008; see Bauer et al. 2013; Kawaletz and Plag 2015). This finding suggests that still today
speakers utilize this suffix in the creation of new words.

The suffix -ment prefers Romance verbal bases (abandonment) but also attaches to
Germanic verbs (amazement) as well as other categories such as adjectives (foolishment),
nouns (illusionment), and bound roots (compartment, see Bauer et al. 2013, 198). Deriva-
tives in -ment exhibit a large range of readings (see Bauer et al. 2013; Kawaletz and Plag
2015), as shown in (7):

(7) events assessment
results improvement
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states contentment
products pavement
instruments refreshment
locations embankment
patient/theme investment

Derivatives which are long since established are often highly lexicalized and may show all
kinds of idiosyncrasies. We are, however, interested in the productive derivational process,
not in opaque forms. That is, we want to know how today’s speakers use the suffix when they
form or try to understand new words. Therefore the focus of this study is on neologisms and
very rare forms. These are usually transparent in order to enable successful communication
(e.g. Plag 1999). The dataset for the present study is taken from Kawaletz (2018). It was
built using various corpora and data bases, as described below.

4.2 Sampling newly derived words in -ment

A major and established source in the search for neologisms is the OED. With 600,000
words and 3 million quotations, the OED is an exceptionally detailed and comprehensive
dictionary of the English language. It is continuously updated with new words and usages
of existing entries, giving dates of first citation for every sense in which a lemma is attested.
It is therefore a convenient tool for the identification of neologisms.

A list of entries containing possible neologisms was retrieved using the interface provided
by the OED. Using string search we looked for words with first citations dating from 1900
to today (see, for example, Plag 1999 for a similar procedure). The resulting list of 134
types of raw data was then subjected to a standard revision procedure, weeding out non-
pertinent data. 18 derivatives remained after cleaning.

In addition to the OED neologisms, the data set was substantially extended by extract-
ing hapax legomena and other very rare forms from COCA. Hapax legomena (or ‘hapaxes’,
for short) are words which occur only once in a given context, such as, in the present study,
a corpus. Hapax legomena are central in the study of productive derivational processes. It
can be shown that the majority of neologisms in any given corpus is contained precisely in
this group of hapaxes (see Plag 2003, 68). This means that hapaxes are a valid source of
neologisms.1

Three tools were employed in this step of the process: COCA (Davies 2008), VerbNet
(Kipper et al. 2008) and Coquery (Kunter 2015). With more than 450 million words written
and spoken between 1990 and 2012, COCA is an appropriately large corpus for the identifi-
cation of hapaxes as potential neologisms. VerbNet is a hierarchical verb lexicon of – at the
time that this is written – 6088 English verbs. It is based on the verb classification devel-
oped in Levin (1993) and includes syntactic and semantic information. The corpus query

1Note that it is not claimed that every hapax is indeed a neologism. In fact, a large number of hapaxes
are actually very rare or specific technical terms, archaisms, non-transparent ad hoc inventions, typing
errors or other kinds of errors. The size of the corpus is also a decisive factor: The larger the corpus, the
higher the proportion of neologisms among the hapaxes (see Baayen 1996, Baayen 2009).
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tool Coquery was used to conduct an automatized search of the DVD-version of COCA
(Davies 2008) for all verbs listed in VerbNet, plus the orthographic string <ment*>. Those
with a frequency of 1, 2 or 3 were considered for further investigation.2 A total of 158 types
of raw data could be identified, which was reduced to 117 types after cleaning.

A second COCA search was conducted in order to identify -ment derivatives which are
not formed on the basis of verbs already listed in VerbNet. Using the web interface provided
by Brigham Young University3, COCA was searched for all words with a frequency of 1 or
2 ending in either <ment> or <ments>. The resulting list of 5142 types had to be weeded
heavily. Of the remaining 109 types, 60 were based on verbs not listed in VerbNet and
could thus be added to the dataset.

Merging the COCA dataset with the types from the OED led to a data set of 244
derivatives (i.e. types) based on 36 different verb classes. This dataset was reduced to a
more manageable number, containing only types based on the four biggest represented base
verb classes: Psych verbs, change of state verbs, putting verbs and force verbs. The final
data set contains 55 types. The words from COCA were all produced between 1990 and
2012 (the complete range of the corpus); the oldest attestation from the OED dates back
to 1900, while the most recent one was produced in 1961.

4.3 Sampling attestations

The ambiguity of derived words in context is of course also pertinent when investigating
hapaxes, which are by definition attested only once in a given corpus. In any such unique
attestation, one of two things may happen. If the hapax is unambiguous in the given
context, it is impossible to know which further readings are conceivable. If the hapax is
ambiguous in its context, it cannot be determined which meaning was intended by the
speaker. A related problem occurs in the dictionary data. Although the OED aims at wide
coverage, for obvious reasons it does not include every meaning variant ever attested. Since,
however, it is exactly these innovative, spontaneous, and fully transparent formations that
are of interest for this study, it seemed necessary to enhance the data set with further
attestations.

To this end, further corpora such as WebCorp (Renouf et al. 2006), GloWbE (Davies
2013), or Google were searched for additional attestations of the types sampled so far. The
sampling of attestations was not random, as we specifically looked for attestations that
reflected the polysemous nature of -ment derivatives. For example, the first attestations
sampled for a given word might have been all eventive. We then searched until we found
words with other possible interpretations. This biased sampling procedure was necessary

2The reason why not only hapaxes, but also dis and tris legomena were included is that the search results
may be corrupted in various ways, “hiding” actual hapaxes. Take, for instance, the case of musement : The
noun is listed with a frequency of 2 in COCA, but one of the attestations is actually bemusement with a
wrongly placed space (“be musement”). Also, it occasionally happens that the very same context is listed
twice. By including dis and tris legomena, the chances of avoiding these problems and thus finding a larger
number of pertinent forms can be increased.

3http://corpus.byu.edu/coca/
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to ensure that we have enough eventive and non-eventive, abstract and concrete readings
in our data set.4 The final data set comprised 406 attestations.5

4.4 Coding

All tokens were manually categorized according the binary distinction between eventive
vs. non-eventive readings, corresponding to our distinction of interest. In addition, we
annotated a binary distinction between abstract vs. concrete readings. This additional
coding was performed to enable more detailed investigations in subsequent analyses (cf.
Section 6.2).

The eventive category is taken here to cover all kinds of events, processes and states.
non-eventive readings comprise both concrete entities such as objects, animals or per-
sons, and abstract entities such as quantities or means of communication. Underspecified
contexts were classified as ambiguous. There were also a few cases where, regardless of
context, it was impossible to assign the word to any of the three categories because it was
conceptually unclear to which category (eventive or non-eventive) it should belong in
the first place.

Tokens denoting an idea, quality, state or event were coded as abstract. All eventive
nouns therefore automatically fell into the abstract category. Concrete nouns, on the
other hand, are those denoting entities existing in a physical form.

The resulting distribution of classes across the data set is given in table 2.

Table 2: Distribution of semantic categories in the dataset, cross-classified
total abstract concrete ambiguous

eventive 275 275 0 0
non-eventive 70 15 49 6
ambiguous 55 1 0 54
unclear 6 6 0 0
total 406 297 49 60

We also coded -ment derivatives for the type of base verb they feature. This was done
according to the verb classes proposed by Levin (1993) (and extended in the VerbNet

4The distribution of readings in our data set can therefore not be taken as being representative of the
distribution of these readings in the language at large.

5Web-search tools such as Google exhibit certain shortcomings in the context of serious linguistic
investigation (e.g. almost unlimited corpus size, no data organization, no annotation, no control about the
origin of the data). However, it has also been shown that they can be a convenient indicator for innovative
language use (see Diemer 2011, and the papers in Hundt et al. 2006). In order to meet the requirements
of academic research as well as possible, any indication that the author of a given text might not be a
native speaker of English was taken as a reason to exclude this attestation. For this, the wider context
was scanned for grammatical errors, awkward formulations or straight-forward indicators of the country
of origin.
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project Kipper et al. 2008). The base verbs in the final data set come from four verb
classes: psych verbs, verbs of change of state, putting verbs, and force verbs. All four verb
classes feature eventive, non-eventive and ambiguous readings.

Let us now turn to our disambiguation task. In order to explore the extent to which the
context can resolve the meaning ambiguity exhibited by newly derived words, our analysis
and implementation proceeded as follows. First we obtained distributional semantic vectors
for typical event nouns and typical entity nouns (our ‘training set’) based on a source corpus
(a concatenation of the British National Corpus and UkWaC, 2.6 billion tokens in total).
We then trained a classifier algorithm to detect the class of a given word (i.e. eventive
or non-eventive) in the training set based on the vector of this word. In the second step
(‘disambiguating’), we tested how well our trained classifier can disambiguate the -ment
derivatives in our data set, using the vectors we obtained for these derivatives from their
rare attestations in our sources.

5 Implementation

In this section we first prepare the ground for our empirical investigation by introducing
Distributional Semantics. This is followed by a detailed description of our work-flow (i.e.
training and testing).

5.1 Distributional Semantics

Distributional Semantics is the name of a family of approaches to semantics that rest on
the assumption that the meaning of words is correlated with the ranges of contexts in
which it can appear (e.g. Wittgenstein and Schulte 2001; Harris 1954; Firth 1957). As
a computational approach it seeks to formalize this idea in such a way that it becomes
mathematically tractable in the form of vector representations. In the simplest type of
distributional model, the meaning of a word (referred to as ‘target’) is represented as a list
of numbers, i.e. a numerical vector, which represents the word’s frequency of occurrence
with all other words (the ‘contexts’) in a given corpus within a specified window to the
target word’s left and right. This type of distributional model (both targets and contexts
are words) is defined as ‘bag-of-words’ model (see Turney and Pantel (2010) for an overview
of other types of model). The vectors are collected in a matrix, with each row of the matrix
corresponding to the distributional vector for a target word. Table 3 gives a toy example
of such a matrix. It lists the frequency of co-occurrence of four target words (t-shirt, tie,
lawyer and judge) with two context words (wear and law).
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Context
Target

t-shirt tie lawyer judge

wear 9 7 2 4
law 1 3 7 9

Table 3: Matrix with frequencies of co-occurrence for four target words

The matrix of table 3 can also be represented graphically as in Figure 1.

Figure 1: Lemma vectors for eight word pairs

In figure 1 one can easily see that the vectors for the words lawyer and judge are much
closer to each other than to the words tie and t-shirt. One can also see that tie and t-shirt
are very close to each other, and that tie is closer to lawyer and judge than t-shirt is. The
distance between the vector of two target words can be interpreted as the empirical correlate
of the amount of meaning they share, that is to say, their similarity. The closer two vectors
are to each other, the more similar the words are semantically. This is in accordance with
the traditional insight that words that are similar in meaning are likely to occur in similar
contexts. The vector-based quantification of similarity can be implemented mathematically
in different ways, for example by using the cosine and the Euclidean distance, or by other
measures used in mathematics for the purposes of comparing vectors.

While computation of pairwise similarities is one of the typical applications of Distri-
butional Semantics, this is not the approach employed in this study, because our aim is
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to learn typical contextual properties of semantically motivated groups of lexical items
(i.e., eventive vs. non eventive). In the what follows, we provide a high-level sketch of our
approach to the disambiguation of -ment derivatives.

Lemma and instance vectors In a distributional semantic model as described above,
distributional vectors are typically collected for word types, that is at the lemma level: we
therefore in what follows will refer to such vectors as ‘lemma vectors’. Lemma vectors are
aggregates over all instances of a given lemma in a given corpus in a pre-defined contextual
window (for example five words before and after the word in question). Lemma vectors
thus represent the usage of a word (i.e. a lemma) across a potentially large number of
occurrences. This is the main strength of distributional semantic models, but it also brings
in some limitations. First, as each lemma word is represented by a unique aggregated
distributional vector extracted from all its contexts, the senses of polysemous words are
conflated into the same representation. Second, if a lemma is not frequent enough, its
vector representation will be not reliable, since most potential context words will simply
not be attested; from this perspective, unattested words represent an extreme case of low-
frequency: in this case, it is just impossible to collect a lemma vector.

Our study faces both problems, as the -ment derivatives in our dataset are both in-
frequent and prone to different readings. Our approach builds on a very common solution
proposed in the distributional semantic literature for the polysemy issue, which, crucially,
turns out to be a good solution for the low-frequency issue as well. A way out of the poly-
semy problem is to compute so-called ‘instance vectors’, that is, vector representations for
individual instances of words, i.e. tokens, rather than lemmas, i.e. types. This approach
not only addresses the sparsity problem for the rare words that we consider in this arti-
cle, but also enables us to model context-based disambiguation phenomena for individual
occurrences of such words.

To compute instance vectors, we adapt the proposal by Schütze (1998). We consider a
window of context words around our target words. We are only using content words for
the instance vectors (nouns, verbs, adjectives, adverbs). This means that we remove non-
content words when we calculate the window. The words from the context window form
a vector. Each word in this vector is then replaced by its distributional semantic lemma
vector. The resulting set of vectors is then transformed into a new vector by averaging all
vectors. We thus obtain a vector for each instance in its specific context, i.e. our instance
vector. With these instance vectors, further computations become possible, for example the
comparison with other instance vectors of the same lemma, or classification with respect to
more abstract semantic categories. Note that this computation, crucially for our purposes,
does not require a vector for the target word itself – the model can be thought of performing
a kind of cloze test (Taylor, 1953).

Consider Figure 2. It gives the fictitious instance vectors in red color for two tokens of
suit (suit1 and suit2 ) as they occur in the sentences given in (8).

(8) a. The suit is next to the tie and the t-shirt.
b. The lawyer filed a suit to the judge.
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Figure 2: Sentence vectors for two tokens of suit

In this toy example, the two instance vectors are able to discriminate between the
two senses of suit. In a similar fashion, we hypothesized, instance vectors can be used
to discriminate between potential eventive vs. non-eventive readings of a given word in its
context. For example, one can assume that the verb happen is likely to occur in the context
of the eventive noun accident but not so likely to occur in the context of an entity noun
such as desk. Thus, the presence of happen in a given context can be used to predict the
semantic class of nouns in its context.

The notion of context Before going into more details of our approach to disambigua-
tion, let us provide a few clarifications concerning the notion of context our study relies
on, from a distributional semantic perspective. In our theoretical discussion, we have used
this term mostly in the sense of ‘syntactic context’.6

6A more general note of caution is in order concerning the notion of ‘context’. The examples in (1) and
(6) have shown that such a restricted notion of context is probably too limited. The fact that the semantics
of some derivatives may not be fully determined even when they are embedded in a particular syntactic
context does not mean that the ambiguity of construction in (1) and embrittlement in (8) is not resolved
at all. In particular, there are factors other than the immediate sentential context that may work to resolve
ambiguity. Such factors involve more general discourse contexts and common ground between the speaker
and the addressee. These factors are very hard, if not impossible to investigate systematically on a larger
scale. In the present study, we restrict ourselves to the immediate sentential context as described above,
but will keep track of how the algorithm treats readings that have been identified as ambiguous in our
manual coding.
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Our bag-of-words approach, however, collects all the contexts within a context window
(e.g., five content words to the left and right of the target) irrespective of syntactic structure
proper. While contexts which are considered as prototypically syntactic are very likely to
occur in that window (for instance verbs of which the target noun is the head of an
object or subject noun phrase), this is not guaranteed (for example due to long distance
dependencies). A whole set of contexts which are not part of the argument structure of the
target will also contribute to its distributional representation, for example coordinates (as
in dogs and cats) and topically related words as in the bread in this bakery).

5.2 Semantic class disambiguation as supervised classification

In this study, we implement semantic class disambiguation as a supervised classification
task. Supervised classification is a machine learning technique which assigns each item (in
our case, the -ment instances in the dataset) to one class (in our case either eventive
or non-eventive), based on a generalization built from a series of training examples.
Training examples are pairs consisting of an item with its corresponding class which are
considered to be a reliable representation of the generalization we are trying to build. Once
the generalization has been built, it can be applied to predict a class for new items.

Applied to our concrete task, recall that distributional representations (i.e. our vectors)
can be interpreted as coordinates in a multidimensional space. In this geometric conceptu-
alization, what the classifier learns is a boundary in the space (cf. Figure 1) that separates
the instances of the two classes (eventive vs. non-eventive) from one another as well
as possible, and can make predictions for novel items by checking on which side of the
boundary the item lies.

Let us now turn to the different steps we took in our study. Figure 3 provides a visual
representation of the workflow. In order not to clutter the presentation, technical details
concerning the computational implementation are not discussed in the following passages,
but are spelled out in Appendix A.
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Figure 3: Workflow of the implementation. Blue boxes represent external resources. The
different steps are represented by color-coded boxes and arrows.

The following paragraphs will take the reader through the steps shown in Figure 3.
While the tools we employ are known and well-established, our study integrates them for
a new enterprise, the exploration of the semantics of derivational morphology. In doing so,
we provide a contribution to the exploration of the semantic representation of the long tail
of the frequency distribution, populated by large amounts of low-frequency items.

Step 0: Collecting training nouns and training sentences As discussed above,
supervised classification requires examples that can be used for training. These examples
serve as the source of the generalization we are going to apply to the -ment derivatives.

The typical procedure in classification is to use a part of the dataset for training and an-
other for testing. However, since our focus is on meaning construal for rare words, we use a
different route: We first train a classification model on a set of nouns that are independently
classified for their senses, and then apply this model to novel, rare derivations.

There is a rich body of literature on lexical disambiguation (Word Sense Disambigua-
tion) with distributional semantic methods, see e.g. Navigli (2009) for an overview. These
studies typically use the sense inventory provided by a lexical resource such as WordNet
(Fellbaum, 1998), a large-coverage lexical data base for English. Even though we do not
use classical Word Sense Disambiguation methods in this study, we will also make use of
WordNet as a source of semantic class information. With that decision we follow studies
that have used distributional methods in conjunction with top-level WordNet classes to
model systematic polysemy (Boleda et al., 2012a), class-based (i.e. abstract) Word Sense
Disambiguation (Izquierdo et al., 2009), or lexical acquisition (Joanis et al., 2006).
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From WordNet we collected frequent, unambiguous lemmas as training nouns for Word-
Net’s semantic classes eventive, non-eventive, strict object, living thing, and
lax object. We chose the rather broad categories of eventive and non-eventive as
well as more fine-grained subcategories of non-eventive (i.e. strict object, living
thing, and lax object) to be able to try out different dichotomies for the classifica-
tion task (see Sections 6.1 and 6.3 for the different outcomes). For these nouns we then
extracted sentences containing nouns from a large reference corpus.

Step 1: Obtaining distributional representations for training nouns and training
sentences In this step, distributional representations for the training nouns (i.e. lemma
vectors) are built, followed by the computation of representations for individual occurrences
of these nouns (i.e. instance vectors), all in accordance with the standard procedures in
distributional semantic modeling outlined in Section 5.1.

Step 2: Learning to distinguish eventive and non-eventive nouns The instance
vectors are employed to train a classifier with supervised learning methods. The input of a
classifier in the training stage is a set of distributional vectors with associated classification
labels. We draw our training examples for the eventive class from the set of occurrences of
the non-ambiguous event nouns in the training set. Correspondingly, the training examples
for the non-eventive class come from the set of non-ambiguous non-event nouns.

Step 3: Disambiguating -ment derivatives Now we can apply the classifier to dis-
ambiguate -ment derivatives. We first compute an instance vector for each -ment derivative
in our data set. The classifier is then asked to predict a class label for each instance vector.
The predicted class is then compared to the manual annotation described in section 4.
Note that, for the quantitative evaluation of the classifier, we focus on the predictions for
the -ment derivatives which have been classified as eventive or non-eventive, because this is
the distinction we trained our classifier on. We can, however, use the classifier to assign the
-ment derivatives classified as ambiguous by the human annotators to either an eventive
or non-eventive reading, and interpret this prediction qualitatively (see section 6.2).

A commonly used measure to assess the performance of a classifier is the F-score. F-
scores combine two different measures of performance, recall and precision. Recall is the
ratio of the number of items for which the model correctly predicts a given category, say
eventive, and the number of items which are indeed eventive. Precision is the ratio of
the number of items for which the model correctly predicts a given category, say eventive,
divided by the number of items for which the model predicts this category. The F-score is
the harmonic mean of precision and recall. Since we have two categories that are predicted,
two F-scores are computed in the way just described, one for each category. To compute
an F-score for the whole classification, we average the two F-scores. This procedure, called
‘macro-averaging’, is the most conservative manner of computing overall F-scores.

F-scores range between 0 and 1. In a balanced data set with an euqal distribution of two
categories, the baseline is 0.5 and any higher F-score value indicates some improvement
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over a random decision. In unequally balanced data sets the baseline is set by the more
frequent category. For example (and abstracting away from F-scores), in a data set with
a 60% vs. 40% distribution of items across two classes one would have a 60% chance of
getting it right if one simply assigned all items to the majority category. The baseline for
any improvement introduced by a classifier would therefore be 60%.

Summing up, the evaluation of the classifier on the manual annotation allows us to
ascertain how successful the algorithm is in finding the right interpretation.

6 Results

This section reports the results of our classification experiments with rare words in respect
to the eventive/non-eventive distinction. We first report the outcome of the main experi-
ment in which we vary the semantic classes that we use for training (Section 6.1). We then
present more detailed analyses in which we address two more specific questions:

• Which classes are modelled well or badly, and why? (Section 6.2)

• Would lemma vectors theoretically be able to do a better job? (Section 6.3).

6.1 Main experiment

As described in Section 5.2, we trained our classifiers to distinguish the instance vectors of
the nouns for the eventive and non-eventive classes, respectively, and then tested the
classifiers on the instance vectors of unambiguous -ment derivatives.7

Initial experiments with this classifier showed reasonable, but not overwhelmingly good
results. Our working hypothesis was that this was a natural consequence of both the
inherent difficulty of our data and the very heterogeneous nature of the non-eventive
class. This class comprises as ontologically diverse subcategories as abstract nouns (liberty),
artifacts (coffeemaker), and animals (dog). Arguably, it is difficult for distributional models
to learn context cues that are equally valid for all of these nouns.

We therefore decided to assess to what extent this heterogeneity problem can be ad-
dressed by a more focussed training of the classifier, using more specific classes. Specifically,
we trained three additional classifiers for the more specific (and therefore, hopefully sim-
pler) distinctions between (a) eventive and lax object, (b) eventive and strict
object, and (c) eventive and living thing. The three categories of lax object,
strict object, and living thing as used by WordNet can be illustrated with abstract
nouns such as liberty for the lax object category, concrete nouns such as stick for the
strict object category, and animate objects such as dog for WordNet’s living thing
category. The results are shown in Figure 4.

7We exclude the ambiguous -ment derivatives from the numerical evaluation, since our two-class model
is not able to make correct predictions for them. We include the ambiguous derivatives in our subsequent
analysis, however. It is generally far from trivial to devise a meaningful model for properly ambiguous
lexical items, cf. the studies by Boleda et al. (2012b) for polysemous adjectives.
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Figure 4: Performance of the classifier in disambiguating -ment derivatives, with the clas-
sifier having been trained on different non-eventive subclasses.

The majority class baseline (always assigning Eventive) comes in at an F-Score of
0.44 (horizontal blue bar). All four classifiers perform well above the baseline, establishing
that our model is learning something meaningful about the eventive–non-eventive
distinction. The most general model, which is trained on all kinds of non-eventive, is
shown in the second pair of bars from the right. This model performs at 0.6 F-Score (using a
2-word window). The settings using only lax and living non-eventive nouns do somewhat
worse, presumably because these subclasses are too specific to generalize well to the test
set. We find the best overall performance for the classifier trained on eventive / strict
object data, with an F-score of 0.63. Evidently, this setup strikes the best balance between
learning a simplified distinction that does not generalize well, and learning a distinction
that is very difficult.

As for the size of the context, we see only small differences betweena very narrow con-
text (window size 2) and a relatively broad context (window size 8). Across all classifiers,
there is a small advantage for the narrow context. How can we understand this, perhaps
surprising, result? Previous studies targeting evaluation of bag-of-words distributional se-
mantic models have explored the modulation of the performance in connection with the
manipulation of the window size (Sahlgren, 2006; Lapesa et al., 2014). Generally speak-
ing, their take home message is that smaller windows bias distributional representations
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towards true similarity (assigning high similarities to synonyms), while larger windows
bring topical relatedness into the picture (assigning high similarities to syntagmatically
related words). In this connection, the slightly detrimental effect of larger windows seems
to suggest that broader topical relatedness does not support -ment disambiguation.

6.2 Analysis 1: Per-class performance

Let us look at the results in more detail to learn more about how context predicts the
different interpretations for all items, including the ambiguous ones. To simplify the ex-
position, we will from now on focus on the best classifier (i.e. the one trained on event
/ strict object wiht a 2-word window) and see how it performs for the three classes
(eventive, non-eventive, ambiguous). We omit the six cases of nouns annotated as
unclear since this class is too small to allow for any generalization. Percentages are given
in Table 4, and Figure 5 plots the distribution of the manual annotations against the pre-
dicted interpretations for easier reference. The mosaic plot shows the areas in proportion
to the number of observations in the data set.

Figure 5: Predictions vs. annotations
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Table 4: Proportions of predicted interpretations vs. manual annotations (figures are
rounded)

Predictions
Annotations

eventive non-eventive ambiguous
eventive 0.78 0.47 0.73
non-eventive 0.22 0.53 0.27

We can see that 78 percent of the manually annotated events are also classified as events
by the classifier. This means that the context, even if very small, provides rather robust
cues for finding the right interpretation with eventive nouns.

For a more detailed analysis, we can ask the classifier to provide a probability for each
prediction, which enables us to zoom in on cases that it is more certain or less certain
about (see Appendix A for details). A look at some examples with a high probability for
an eventive reading supports our ideas about the context (emphasis ours, probabilities
given in parentheses):

(9) a. I got over that initial moment of dumbfoundment (I’m making up my own
words today) (0.84)

b. We can learn to let go of the agitated states of mind, such as anger, worriment,
resentment and fear, that produce unhappiness (0.94)

c. As a population that had immediate and intimate access to aboriginal peo-
ples, half-breeds stimulated and intensified anxieties regarding the deleterious
effects of alcohol on Indians, and how drunkenness might trouble their moral
upliftment and eventual assimilation into white society. (0.96)

d. Hydrogen, especially atomic hydrogen, is particularly dangerous because it
tends to cause rapid embrittlement even at low temperatures. (0.96)

One can see in each example that the context provides strong cues towards eventive read-
ings. In all examples one can either find other event nouns (e.g. states as in (9-b)) or
temporal expressions that point towards events (initial moment in (9-a), eventual in (9-c),
and cause rapid in (9-d)).

With non-eventive readings, the prediction is much harder. Only 53 percent of the
manually annotated non-eventive readings are successfully categorized by the classifier.
In order to understand the discrepancy in success between the classification of eventive
nouns and that of non-eventive nouns it is instructive to look at the distributions of the
probabilities predicted by the probabilistic classifier (instead of the categorical decisions of
the binary classifier).

Figure 6 shows the three distributions of probabilities.
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Figure 6: Distribution of predicted probabilities for -ment derivatives that are manually
annotated as eventive (unbroken red line) vs. non-eventive (dashed black line) vs.
ambiguous (dotted blue line).

The solid red curve (nouns annotated as eventive) is highly right-skewed and has a very
clear maximum at about 0.8 and only a little bump at about 0.4. Its shape, location and
skewedness indicates that eventive nouns are classified with considerable success as even-
tive. The dotted blue curve (nouns annotated as amabiguous) has two very slight bumps
close to each other at probabilities at around 0.6 and 0.8. This distribution is still normal,
as shown by a Shapiro-Wilk normality test (W = 0.96, p-value = 0.08). The black dashed
curve, in contrast to the other two curves, shows a clearly bimodal distribution, with two
peaks at about 0.38 and 0.65, respectively. Such bimodal distributions are often indicative
of an underlying dichotomous distinction, with each sub-class patterning differently. For
the right-hand sub-class of nouns, that is the class with the peak at a probability of 0.65,
we get a tendency towards an eventive reading. For the left-hand class there is tendency
of nouns to be classified as non-eventive.

Which sub-categories of non-eventive nouns might be underlying this bimodal distri-
bution? We hypothesize that the distinction between abstract and concrete objects (cf.
Section 4) might be responsible for the bimodal distribution, with the concrete nouns be-
ing more prone to correct object classification, and thus on the left-hand side of the plot. To
test this assumption, we checked the probabilities for the nouns of these two subclasses. The
distributions are shown in figure 7. The boxes contain the central 50 percent of the data,
the dots indicate the medians. The whiskers go up and down 1.5 times the interquartile
range plus the respective quartile.
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Figure 7: Distribution of predicted probabilities for concrete vs. abstract non-eventive -
ment derivatives

The two distributions of the probabilities are indeed significantly different (D = 0.64,
p < 0.001, Komolgorov-Smirnoff test). In accordance with our hypothesis, the abstract
nouns have a mean probability of 0.70, which means that they have a strong tendency to
be classifed as events, while the concrete nouns have a mean probability of 0.41, which
means that they tend to be classified as objects. The difference in the means is statistically
significant (W = 609, p < 0.001, Wilcox test).

For illustration consider the following examples of concrete nouns in (10) (probabilities
of eventive classification are given in parentheses). The examples show that the context
has no clear cues for an eventive interpretation but some cues for an object interpretation.
In (10-a) the noun concrete is used in the two word window, in (10-b) cardboard and held
provide cues towards a concrete noun interpretation.

(10) a. The ”U” shaped cap (app. 1”x1”x1”) will cover the frame and hide the old
exterior putty or concrete embedment. Once caulked, the exterior will be
neat, finished, and weather tight (0.05)

b. I developed a custom fit cardboard fitment that held the USB all nice and
tight with the bonus of a business card next to it for company. (0.05)

It is also instructive to look at wrongly classified concrete nouns, as illustrated in (11-a).
Although it is impossible to verify this statistically, the two highly event-related words
ongoing and fight must have been influential in predicting an eventive interpretation, maybe
also the word see (during, which may also be indicative of events, is a preposition and
therefore not part of the content word window). The reverse case, an abstract non-eventive
noun that is wrongly classified as eventive, is given in (11-b). Two of the four words in the
context window of the target noun debauchment, are yoga, which denotes a kind of activity,
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and thus is an eventive noun itself.

(11) a. Militias are seen in an emplacement during an ongoing fight against Syrian
Regime Forces in Tal Mayyasat town of Aleppo, Syria on February 03, 2015
(0.90)

b. Gerson refers to most of the newer yoga classes as “debauchment”. Yoga
purists such as Gerson are calling for a return to teaching yoga in its original
form, a program aimed at seeking self-enlightenment by training the mind.
(0.88).

Let us finally turn to the ambiguous words. They tend to be classified as eventive. (12)
gives two examples of such nouns for illustration. In these examples there is admittedly
very little that could guide the listener’s search for the right reading.

(12) a. Dont you see afk people trying to get the trinket as an annoyment? (0.22)
b. Client site just got a whole lot more awesome :) a way to go, work to be done,

convincements still needed but a whole lot better in a flick (0.80)

If we compare the distribution of the ambiguous nouns with that of the abstract non-
eventive nouns we see that they are very similar. The right maximum of the black dashed
line (abstract non-eventive) is very close to the maximum of the blue dotted line (ambigu-
ous). The means of these two sets of nouns are actually not significantly different from
each other (W = 527, p = 0.10). This suggests that the semantic space of the ambiguous
nouns is very similar to the semantic space of the abstract object nouns. And this space,
as shown above, is similar to the space of eventive nouns.

6.3 Analysis 2: Lemma vectors vs. instance Vectors

Due to our focus on rare derivatives in this study, we had to use instance vectors, since no
lemma vectors can be computed for unseen (and very rarely seen) words. Nevertheless, we
would like to know how much noise the use of instance vectors introduces into the semantic
class assignment task, as compared to the use of lemma vectors as is standard for frequent
words. In other words, we would like to assess the difference in success when predicting the
reading of a frequent word as against that of a word that is attested only once.

To make this assessment, we perform an experiment on the set of unambiguous, mid-
frequent nouns from WordNet that we used before to train the eventive vs. non-eventive
classifier. We use a technique called cross-validation (cf. Appendix A), dividing these nouns
up into a training portion (with a 50-50 split between eventive and non-eventive nouns)
and a test portion (with the same distribution). Thus, the baseline for classification in this
setup is F=0.50.

In this setup, we can now either train a classifier directly on the lemma vectors of these
nouns, or on the instance vectors for their individual occurrences. The results for both
alternatives are shown in Figure 8, which gives the F-scores for our training nouns (on the
y-axis). As in Analysis 2, we experimented with different subtypes of eventive nouns for
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training. The green bars indicate the performance of the lemma vectors, the red and blue
bars indicate the performance of the instance vectors for the two different window sizes.
The baseline is indicated by the horizontal dark blue bar.

Figure 8: Distinguishing eventive and non-eventive nouns: Results for mid-frequency nouns,
comparing lemma vector-based and instance vector-based models

We see that the lemma vectors yield good predictions (all four are around 0.8). The
upper bound is a perfect score of 100% which the classifier can in principle achieve, but
which it clearly misses.

The instance vectors work somewhat worse, with F-scores around 0.7. However, rela-
tively speaking, this performance is rather comparable to the instance vectors in our main
experiment (see 6.1). There, the improvement for the two most successful categories were
16 and 19 percent (2-word window) over the baseline of 0.44, whereas these categories show
an improvement of 19 and 22 percent over the baseline for the training nouns. Taking into
account that the training nouns are substantially more frequent than the rare derivatives
we classified in our main experiment, and unambiguous to begin with, we can conclude
that the instance vectors do a good job modeling the meaning of the rare derivatives.

The two different window sizes for the instance vectors result in very similar F-scores.
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7 Discussion and conclusion

Our results show that it is possible to use Distributional Semantics to disambiguate the
meaning of newly formed words. Although the predictions derived from the vector space
still leave room for improvement, they are way above the baseline probabilities and thus
show the usefulness of the context in disambiguation.

It also turned out that very small context windows are sufficient to find the intended
interpretation in the majority of cases. Quite surprisingly a large window of eight words
did not generally improve the predictions. A window with two content words on each side
suffices to make predictions that are just as good, or even better than those derived on the
basis of a larger window. Generalizing from the model to humans, this result may indicate
that, as a general tendency, speakers or writers introduce and use new words in a way that
helps listeners (or readers) to find the right interpretation without being forced to mobilize
too many resources. The immediate linguistic context carries the semantics a long way.

The performance of the classifier differed for different subcategories of nouns. Non-
eventive derivatives are hard to classify as such. Closer inspection revealed that the dif-
ficulty lies in the semantic similarity of abstract non-eventive nouns to eventive nouns,
which led to many misclassifications in favor of eventive interpretations. The relationship
of abstract nouns and eventive expressions is hardly discussed in the literature, which ei-
ther focuses on different kinds of event nouns and event structure, or discusses the nature
of abstract nouns vs. concrete nouns. An exception is Melloni (2011, 47), who mentions the
problem in her discussion of Bierwisch’s (1991/1992) treatment of German nominalizations
in -ung. Bierwisch analyzes the nominalization Ordnung ‘arrangement’ in Die Ordnung der
Bücher war schwer wiederherzustellen (‘The arrangement of the books was hard to re-
store’) as denoting a result state, i.e. as an event noun. Melloni points out that the noun
can equally well be analyzed as denoting an abstract object. Incidentally, one and the same
context can accomodate both types of noun, as in (13-a) and (13-b).

(13) a. The arrangement of the book is misleading. (result state)
b. The translation of the book is misleading. (abstract object)

In sum, this means that non-eventive abstract nouns and eventive nouns are not only
similar in their semantic properties, they may also occur in the same contexts. Both facts
make disambiguation of such nouns a hard task.

Perhaps not surprisingly, it also became clear that there are quite a few cases in which
the interpretation of new words remains unclear, even if all resources are taken into account.
In a sample of 406 tokens representing 55 types the manual annotation still had to live with
55, i.e. 14 percent, ambiguous forms. That means that there is a non-negligible proportion
of forms that could not be classified convincingly by a human annotator, even if the wider
textual context and world knowledge was taken into account.
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A Implementation details

In this appendix, we provide technical details characterizing the implementation of steps
0 to 3 outlined in Section 5.2 in the interest of reproducibility. The data are available as
supplementary material at to be specified upon publication

A.1 Step 0: Collecting training nouns and training sentences

Sampling training nouns We selected our training nouns based on the semantic field
annotation in the WordNet 3.0 lexicographer files (Fellbaum, 1998). The semantic field
annotation maps each noun in WordNet to 25 abstract semantic classes (called ‘top nodes’
because they form the roots of the WordNet noun hierarchy). Examples of such high level
classes are: artifact, communication, animal, plant, person, etc.

To select the seed nouns for our experiments, we manually established the following
mapping between our classes of interest and the WordNet semantic fields:

• eventive: state, feeling, process, phenomenon, event, act

• non-eventive:

– lax object (lax for short): communication, quantity, relation, social relation,
possession

– strict object (strict for short): object, substance, food, location, artefact,
body

– living thing (living for short): person, animal, plant

As a first step, we extracted five lists (eventive, non-eventive, lax, strict, liv-
ing) containing all nouns belonging to one or more of the relevant semantic fields. We did
not strive for strictly monosemous training nouns: polysemy was allowed within the Word-
Net subtrees covered by each high-level class. For example, WordNet lists two readings for
fox, ’animal’ and ’sly person’. Since both are subsumed by living thing, we included fox
as training noun.
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The five lists were further sampled according to frequency criteria. We extracted fre-
quency information from a concatenation of three corpora: British National Corpus8,
WaCkypedia and ukWaC9. This combination (with 2.6 billions tokens) is used widely in
compuational linguistics as a resource that covers various domains and genres (Baroni and
Lenci, 2010). We lemmatized and part-of-speech tagged thecorpus. A first filtering step, we
discarded all seeds with frequency below 100, which we consider a minimum prerequisite
for reliable distributional lemma vectors. Taken together, the five lists amounted to 15k
nouns. To further reduce their size, we concentrated on seed nouns whose frequency lay in
the second and third quartile of the seeds’ frequency distribution (f > 298 and f < 3903),
following the assumption that mid-frequency lemmas strike a balance between reliability
and generalization to rare derivatives. In the resulting lists, the smallest class was lax,
with 784 nouns. Consequently, we randomly selected 784 nouns for each class to obtain
same-size training sets of 784 nouns for each of the five classes (eventive, non-eventive,
lax, strict, living).

Sampling training sentences For each noun in each of the five lists we extracted (from
the same selection of corpora) all sentences containing the nouns with a sentence length
between 6 and 150 word tokens10. We further randomly selected 10 sentences per noun.
The sampling procedure outlined above resulted in five lists (eventive, non-eventive,
lax, strict, living) of 784·10 = 7840 training sentences each.

A.2 Step 1: Obtaining distributional representations for training
nouns and training sentences

Using publicly available vectors is good practice in computational linguistics for reasons of
reproducibility. Therefore, we did not build our own distributional lemma vectors. Instead,
we used a set of 183.870 lemma vectors produced by Levy and Goldberg (2014) from the
English Wikipedia by lemmatizing and lowercasing the data and applying the SkipGram
algorithm with a bag-of-words context window of size 5 to obtain 300-dimensional lemma
vectors. This is a state-of-the-art setup.

Based on these lemma vectors, we computed instance vectors for the 7840 training
instances and 406 test instances by summing the lemma vectors for all context words
within some window around the target noun instance that we wanted to disambiguate (cf.
Section 5.1). In order to be able to assess how the size of the context window may influence
disambiguation we computed the instance vectors once for a small context window (2 words
to the left and to the right of the target noun) and once for a larger one (5 words to the

8http://www.natcorp.ox.ac.uk
9UkWaC and WaCkypedia are available from http://wacky.sslmit.unibo.it/doku.php\?id=

corpora
10The lower bound is due to the fact that we want to be sure to find at least some content words as

contexts of our seed nouns; the upper bound is due to the fact that sentences longer than 150 tokens,
which come from Web corpora often contain lists of names or web links. (Sentences longer than 150 tokens
constitute only the 0.03% of the sentences in BNC)
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left and to the right).11 When we did not find a lemma vector for a context word in the
Levy & Goldberg set, we simply omitted the contribution of this context word.

A.3 Step 2: Learning to distinguish eventive and non-eventive
nouns

As classifier, we used a support vector machine, which finds the hyperplane which best
separates two classes in the feature space. Support vector machines are a frequent choice
for classification settings in machine learning. They are in particular robust to overfit-
ting, an important consideration when dealing with rare events. See, e.g., Bishop 2006;
Alpaydin 2010 for the formalization. At the implementation level, we used the svm func-
tion from the sklearn Python package, version 0.18.1 (Pedregosa et al. 2011). We used a
radial basis function kernel, with default settings. To obtain probabilities for classification
decisions, we use Platt scaling (Platt, 1999), a technique that logistically transforms the
distances from the decision boundary produced by the SVM into a conditional probability
P (class|instance).

A.4 Step 3: disambiguating -ment derivatives

Instance vectors for the sentences in the -ment dataset are computed in the way described in
Section 5.1, using the contexts described in section 4. We used the same two context window
sizes as before, and four different constellations of classes (eventive vs. non-eventive,
eventive vs. lax, eventive vs. strict, eventive vs. living). This amounts to the
eight supervised classification experiments reported on in Section 6.1.

11Note that the choices of context windows for the lemma vectors and the instance vectors are indepen-
dent.
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