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Abstract 

It has long been claimed (e.g. Sweet 1892, Bolinger 1972, Ladd 1984) 

that informativity has an influence on the leftward or rightward stress 

assigned to noun-noun combinations in English. However, the few 

available empirical studies of this hypothesis have provided contradictory 

findings (Plag & Kunter 2010, Bell 2013, Bell & Plag 2012). The present 

paper replicates the effect of informativity using the same measures as Bell 

& Plag (2012) but with a different set of data. More informative 

constituents in N2 position tend to be stressed. This result fits with the 

general propensity of speakers to accentuate important information (e.g. 

Bolinger 1972). The results also raise the question of the relationship 

between informativity and constituent identity, which is the strongest 

known predictor of compound stress pattern (e.g. Plag 2010, Arndt-Lappe 

2011). An exploration of this problem shows that the two factors are 

interrelated. We argue that informativity is best conceptualized as 

underlying other predictors of prominence, including constituent identity.  
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1 Introduction1  

It is well known that, in Present-day English, some noun-noun (NN) constructions are 

produced with main stress on the first element (N1), e.g. táble lamp, while others have 

stress on the second element (N2), e.g. silk shírt. In this paper, we use the term 

COMPOUND for all such constructions, in which two nouns combine to name a single 

entity or class of entities. In other words, following e.g. Bauer (1998), Olsen (2000) and 

Bell (2011), we do not distinguish between compound nouns and constructions which 

in some other analyses (e.g. Payne & Huddleston 2002) would be regarded as noun 

phrases with nominal modifiers. For describing the prosody of these constructions, 

we use the terms STRESS and PROMINENCE interchangeably.  

In running speech, about one third of NN compounds (as defined above) are 

stressed on N2, while two thirds are stressed on N1 (e.g. Sproat 1994, Plag et al. 2008, 

Bell & Plag 2012). An adequate account of compound stress in English should 

therefore be able to predict which of these patterns will apply in any given case. Many 

scholars of English have addressed this problem. For example, Chomsky & Halle 

(1968) suggest that, in cases of left prominence, main stress is assigned to N1 by a 

COMPOUND RULE. However, they make no attempt to define the strings to which this 

rule applies, and simply state that an investigation is needed ‘of the conditions, 

syntactic and other, under which the Compound Rule is applicable’ (Chomsky & 

Halle 1968: 156).  

Recent empirical studies by Plag and colleagues (e.g. Plag 2006, Plag et al. 2007, 

                                                           
1 The authors wish to thank Gero Kunter for his help with COCA data. We are also grateful for the 
very helpful comments we received from the two reviewers and the editor Heinz Giegerich. This work 
was made possible by an AHRC postgraduate award (114 200) and a major studentship from 
Newnham College, Cambridge, to the first author as well as two grants from the Deutsche 
Forschungsgemeinschaft (PL151/5-1, PL 151/5-3) to the second author, all of which are gratefully 
acknowledged. 
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2008, Plag 2010, Arndt-Lappe 2011) constitute such an investigation. These studies 

have shown that a variety of different factors can be used to predict the stress pattern 

of a compound, including lexicalization, semantics, and the identities of the 

constituents (N1 and N2): more lexicalized compounds tend to be more prone to left 

stress, compounds exhibiting the same semantic relation between constituents tend to 

have the same kind of stress pattern, and compounds that share the same N1 or N2 

also tend to be stressed in the same way. The latter effect has been interpreted as 

analogical. For ease of reference and to be specific about the kind of analogy involved, 

we will label this effect the CONSTITUENT IDENTITY effect.  

In addition to these well-established effects, there are two further factors that have 

been claimed to influence compound stress, but which have been less extensively 

tested. These are the length of the constituents and their relative INFORMATIVENESS 

(also called INFORMATIVITY or INFORMATION CONTENT). This paper investigates both of 

these factors, with the focus on informativeness. The claim is that less informative 

constituents tend to be unstressed (e.g. Sweet (1892), Bolinger (1972), Ladd (1984)). 

Until now, however, large-scale empirical evidence for this idea has been scarce. Bell 

(2013) and Bell & Plag (2012) find strong informativity effects in a large database of 

compounds from the British National Corpus (BNC, Davies 2004-), but these findings 

are in need of replication. Plag & Kunter (2010) found no independent effect of 

informativity on compound prominence in a large database of compounds taken from 

the Boston University Radio Speech Corpus (Ostendorf et al. 1996), which we will 

refer to as the BU CORPUS. However, that study had two crucial limitations. Firstly, 

only a single measure of informativity was used and, secondly, this measure was 

problematic, since it was calculated on the basis of a very small corpus.  

In the present study we will use the BU corpus data again, addressing the crucial 
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methodological problems of Plag & Kunter’s (2010) study: firstly, we will include a 

greater number and variety of informativity measures, and secondly, these 

informativity measures will be derived from much larger databases, namely the 

Corpus of Contemporary American English (Davies 2008-) and the WordNet lexical 

database (Fellbaum 1998). The informativity measures are the same as used by Bell & 

Plag (2012), so that a direct comparison of the results is possible. Furthermore, in 

contrast to the data used by Bell & Plag (2012), many of the compounds in the BU 

corpus data share each of their constituents with at least one other compound in the 

dataset. This means that it is possible to calculate the tendency of each constituent to 

be associated with a particular stress pattern, and hence to include the constituent 

identity effect in the analysis. This paper therefore has two objectives: firstly, to 

replicate the effect of informativity on compound stress in a different set of data, and 

secondly, to investigate the relationship between this effect and the strongest known 

predictor of compound stress, namely constituent identity. For the statistical analysis 

we will use multiple mixed effects regression modeling.  

The results show that measures of informativity are indeed highly predictive of 

prominence placement. The finding that more informative constituents tend to be 

stressed fits with the general propensity of speakers to accentuate important 

information (e.g. Bolinger 1972). An exploration of the relationship between 

informativity effects and constituent identity effects shows that constituent identity 

subsumes most other known effects on compound stress, including informativity: 

when constituent identity is included as a predictor in our models, other predictors 

become less influential. However, it is also shown that a constituent’s informativity 

strongly predicts its bias for a particular stress pattern (i.e. the constituent identity 

effect), and it is argued that informativity is in fact the most important determinant of 
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compound stress, underlying most other known predictors.  

The paper has the following structure: section 2 gives an overview of the factors 

known to determine the variation in NN prominence, section 3 describes the 

methodology used in the present study, section 4 describes the results of our analyses 

and section 5 summarizes the findings and discusses their implications for theories of 

compound stress. 

2 Compound stress: What we know and what we don’t know  

In recent years the problem of compound stress variation has been addressed in a 

number of empirical studies (Plag 2006, Plag et al. 2007, 2008, Plag 2010, Plag & Kunter 

2010, Bell 2013, Bell & Plag 2012, Kunter 2011, Arndt-Lappe 2011). Using different 

methodological tools and different data sets from different varieties of English, these 

studies have tested various factors that have been claimed in the literature to be 

influential in stress assignment. Since most of these factors will also be included in the 

analyses to follow, we will take a short look at them in this section.  

Before doing so, a note on the nature of the phenomenon we are looking at and the 

pertinent terminology seems appropriate. Most authors speak of (COMPOUND) STRESS, 

while others speak of (PROSODIC) PROMINENCE. Phonetically, compound prominence 

manifests itself in most cases through pitch accents (see Kunter & Plag 2007, Kunter 

2011 for detailed acoustic analyses2). Over and above the lexical stress(es) of each 

constituent in any compound, left-stressed compounds usually have one pitch accent, 

on N1, whereas right-stressed compounds usually have two pitch accents, one on 

each constituent. Given that N1 always receives an accent, the difference between 

left-stressed and right-stressed compounds can therefore be straightforwardly 

                                                           
2 See also Plag et al. (2011) for a parallel analysis of primary and secondary stresses in derived words.  
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conceptualized as one of N2 accentuation. Left-stressed compounds have no accent 

on N2, whereas right-stressed compounds do have an accent on N2. This 

conceptualization is helpful for understanding the relevance of informativity: when 

N2 is informative relative to N1, it receives an accent. However, not much hinges on 

the terminology itself and we will use the terms PROMINENCE and STRESS more or less 

interchangeably.  

In the pre-2006 literature on compound stress assignment, possible explanatory 

factors are usually formulated in a deterministic fashion: compounds of a given type 

are claimed to exhibit either left or right stress categorically. However, practically all 

of the empirical studies carried out since 2006 have shown that such deterministic, 

rule-based approaches are inadequate. In contrast, probabilistic and analogical 

models have been shown to be quite successful in predicting the prominence type of a 

given compound. These empirical studies have consistently shown that a compound’s 

semantics and degree of lexicalization, as well as the identities of its constituents, are 

all predictive of its stress pattern. We will therefore discuss these three factors in more 

detail, as well as the two additional factors investigated in this study, namely 

informativity and length.  

2.1 Semantics  

There are many claims in the literature that right prominence in compounds goes 

together with certain semantic properties. These may be properties of the individual 

constituents, or of the relation between the two constituents (see, for example, Plag et 

al. 2008 for a review of the literature). Large-scale empirical studies have indeed 

found probabilistic effects of certain semantic categories. Plag et al. (2007, 2008), for 

example, found the effects shown in table 1.  
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Insert table 1 here 

 

2.2 Constituent identity  

The idea that the identity of the constituent nouns plays a role in compound stress 

assignment has been around for some time, too (e.g. Schmerling 1971). An illustration 

of this is the behavior of compounds that have street as their N2, compared with 

compounds that have avenue as their N2. When they refer to the names of 

thoroughfares, the former are categorically left-stressed (e.g. Óxford Street, Báuer 

Street, Wáll Street), the latter right-stressed (e.g. Madison Ávenue, Sproat Ávenue, Victory 

Ávenue). This can be interpreted as an analogical effect based on the positional 

constituent family. The positional family is defined as the set of compounds that share 

the first, or the second, constituent with a given compound. For example, the left 

constituent positional family of country house would include compounds such as 

country club, country music, countryside, while the right constituent positional family 

would feature compounds like town house, jailhouse, summer house. For each positional 

family, one can compute the tendency towards a particular kind of stress, and it has 

been shown that this so-called CONSTITUENT FAMILY BIAS, especially the left constituent 

bias, is highly predictive for the stress of new compounds in that family, i.e. 

compounds with a particular constituent in a given position (Plag 2010, Arndt-Lappe 

2011).  

2.3 Lexicalization  

Lexicalization has long been claimed (e.g. by Sweet 1892: 289) to be a contributory 

factor in compound stress assignment, with more lexicalized compounds being more 

prone to left stress. Empirical studies have used spelling, frequency and listedness in 
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dictionaries as measures of lexicalization, with considerable success. The assumptions 

are that more lexicalized compounds are more prone to hyphenated and one-word 

spellings, have a higher frequency and are more likely to be listed in dictionaries (e.g. 

due to their semantic opacity), than less lexicalized compounds. It is now well 

established that degree of lexicalization, as indicated by one or more of these 

measures, is an important determinant of a compound’s stress pattern.  

2.4 Informativity  

Sweet (1892: 288) was probably also the first author to put forward the idea that 

compound stress assignment might depend on the amount of information carried by 

a given constituent vis-à-vis the other. Sweet (ibid.) uses the term LOGICAL 

PROMINENCE for this effect and writes that stress on N1 ‘seems to be the result of the 

second element being less logically prominent than the first, through being a word of 

general meaning and frequent occurrence in compounds’. This reasoning is based on 

the assumption that, in general in language, uninformative elements tend to be 

unaccented, while more informative and unexpected information is accented. A 

further assumption is that the information content of a word depends both on its 

semantics and its frequency, with more semantically general and more frequent 

words being less informative. These assumptions have received empirical support 

from studies by Pan & McKeown (1999) and Pan & Hirschberg (2000), which 

demonstrate that pitch accent placement in texts can quite successfully be predicted 

on the basis of semantic and frequency-based measures of informativity.  

The relationship between semantic specificity, informativeness and compound 

stress has been discussed by various authors, using a variety of terms. For example, 

Jones (1922: 126) suggests that when N2 is felt to have ‘special importance’ it attracts 
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stress and is therefore associated with right prominence. A similar idea is expressed 

by Bolinger (1972), who explicitly links the ideas of accent, semantics and 

informativity. In his view, ‘(a)ccented words are points of information focus’, and this 

in turn is a matter of semantics. But rather than highly informative constituents 

attracting stress, Bolinger (ibid.) suggests that more semantically predictable elements 

are DEACCENTED. He gives the example It’s a geránium plant, in which ‘we understand 

that if it is a geranium, it is a plant’: plant therefore adds very little to the meaning of 

the sentence, and is deaccented. Ladd (1984) also argues that left prominence in 

compounds is the result of deaccenting the second constituent, and suggests that this 

is most likely when N2 is least semantically specific. For example, he argues that the 

reason why thoroughfare names ending in street are stressed on N1, while those 

ending in road, avenue, place etc. are stressed on N2, is that street is the least specific 

and hence least informative of the group, and is therefore deaccented.  

The idea that informativity can be gauged in terms of frequency comes from 

information theory, where a standard measure of INFORMATION CONTENT is the 

negative log likelihood of a word in a corpus (Shannon, 1948). The less frequent a 

word, the less likely it is to occur, hence the less expected and more informative it is 

taken to be when it does occur. This idea is foreshadowed by Sweet’s reference (ibid.) 

to the ‘frequent occurrence’ of N2 in compounds being associated with stress on N1. 

In the same vein, Marchand (1969: 23) states that ‘[t]he frequent occurrence of a word 

as second constituent is apt to give compound character [i.e. left prominence] to 

combinations with such words’.  

Despite the long history of these ideas, there were until recently no empirical 

studies that tested whether one can predict compound stress assignment on the basis 

of informativity: Bell (2013) and Bell & Plag (2012) were the first to show that 



10 
 

measures of informativity are indeed predictive of prominence placement, at least in 

one set of data. Both these studies used the same set of compounds, whose stress 

patterns were elicited in a controlled experimental procedure. The compounds were 

sampled from the demographic section of the BNC, which consists of conversational 

British English. Given that we assume N1 will receive an accent in all compounds, be 

they left- or right-stressed, what is of interest is whether or not N2 receives an accent. 

If this is related to informativity, then the pertinent variables are the inherent 

informativity of N2, and its informativity relevant to N1. Bell (2013) and Bell & Plag 

(2012) used a variety of measures for these two types of informativity.  

As a semantic measure of informativity, the studies mentioned in the previous 

paragraph used SYNSET COUNTS. The term SYNSET comes from the WordNet lexical 

database (Fellbaum 1998), where a synset is a set of words with similar meanings. The 

synset count of a word is the number of synsets to which it belongs, each of which 

represents a different sense of the word in question. For example, the noun house has 

one synset, consisting of house, firm and business firm, that embodies the meaning 

'business organization', and another synset, consisting of house, family, household, home 

and menage, that means 'social unit living together'. Overall, the noun house belongs to 

12 such synsets, i.e. has 12 different senses, in WordNet. Our assumption is that the 

greater the number of senses a word has, i.e. the higher its synset count, the less 

semantically specific it is, and hence the less informative. The noun house, with its 

twelve synsets, would be a semantically rather nonspecific constituent, and hence less 

informative than a semantically much more specific noun like desk, which belongs to 

only one synset (which, in fact, has only itself as its member). Bell (2013) and Bell & 

Plag (2012) show that the greater the synset count of N2, the less likely it is to receive 

an accent. On the other hand, the greater the synset count of N1, the more likely is N2 
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to receive an accent, as it becomes more informative relative to the nonspecific first 

constituent.  

For frequency-based measures of informativity, the above-mentioned studies used 

the constituent family sizes of N1 and N2. The positional family size of N2 is the 

number of different compounds in which that particular word appears in the 

right-hand position: it can therefore be used to estimate the probability of the word 

occurring as the second element of a compound. The greater the positional family size 

of N2, the greater the number of compound types in which it occurs as the right-hand 

constituent, hence the more expected it is following a noun, and the less informative it 

is in that position. The conditional probability of N2 is the probability of N2 occurring 

after a given N1, and can be estimated using the family size of N1. The greater the 

positional family size of N1, the greater the number of nouns that might potentially 

follow it, hence the less expected and more informative is N2 relative to N1. 

Mathematically, this family-size-based conditional probability of N2 can be expressed 

as 1 divided by the family size of N1. Bell (2013) and Bell & Plag (2012) show that, as 

predicted, the greater the family size of N2, the less likely it is to be accented, while 

the greater the family size of N1, i.e. the lower the conditional probability of N2, the 

more likely is N2 to be accented.  

In contrast to the studies mentioned in the preceding paragraphs, Plag & Kunter 

(2010) did not find straightforward informativity effects in their data. Rather, their 

measure of informativity only acted as a rather weak modulator for the much more 

significant effect of constituent identity. Given these contradictory results, a study is 

called for that tries to replicate the effect of informativity, while at the same time 

taking constituent identity into account. The present study will do exactly this.  
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2.5 Length  

Another factor which has been hypothesized to influence compound stress 

assignment is the length of the constituents. Jespersen (1909: 485), for example, 

remarks that longer right constituents have a greater tendency to be stressed. This 

factor has been empirically verified by Bell (2013) and Bell & Plag (2012), the only 

studies to date that have systematically investigated it. Although not the main focus 

of our interest, the present study will include length as a covariate, using the same 

measure as Bell & Plag (2012). 

3 Methodology  

3.1 Data  

In this study, we will use a set of compounds from the BU corpus. In contrast to the 

British English data of Bell (2013) and Bell & Plag (2012), the BU corpus represents 

American English. It contains over seven hours of professionally read radio news 

scripts and includes speech from seven FM radio news speakers associated with the 

public radio station WBUR, four male and three female. The BU corpus is well suited 

for testing hypotheses about compound stress assignment. It contains a large number 

of compounds, it provides high-quality recordings, and the speakers, being trained 

news announcers, produce relatively standard, error-free speech. Furthermore, 

because many compounds in the corpus are repeated, both by the same speaker and 

by different speakers, the data exemplifies the within-speaker and cross-speaker 

variation that is characteristic of English compound stress (Ladd 1984: 256, Bauer 

1983: 103, Plag 2006, Kunter 2011: 174-201, Bell & Plag 2012).  

Compounds from the BU corpus have been investigated in a number of previous 
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studies of compound stress, including Plag et al. (2008), Plag (2010), Plag & Kunter 

(2010), Kunter (2011) and Arndt-Lappe (2011). The reader is referred to these works 

for full discussion of the corpus data, including the role of discourse factors (Plag et al. 

2008) and the determination of prominence based on the acoustic signal (Kunter 

2011). In the present study, we make use of data from Plag et al. (2008) and Plag (2010). 

For convenience, we summarize below how this data was collected and coded. 

From the BU corpus, Plag et al. (2008) manually extracted ‘all sequences consisting 

of two (and only two) adjacent nouns, one of which, or which together, functioned as 

the head of a noun phrase’ (ibid.: 767). From this set, personal names and those 

sequences with an appositive modifier, such as Governor Dukakis, were eliminated. 

The resulting noun-noun compounds were then coded for a number of semantic, 

structural and phonological features. For a subset of these compounds, Plag (2010) 

elicited human judgements of stress pattern: two trained listeners classified each 

token on the basis of their auditory impression, and tokens were excluded from 

subsequent analysis if the two judgements differed. In 77.3 percent of cases, however, 

the two judgements were the same, producing a dataset of 1154 tokens with agreed 

prominence. This set of 1154 tokens is the one we will use here. We will use the 

existing codings from the previous studies mentioned above, complemented by 

measures of length and informativity. Length and informativity will be measured 

using the same variables as those employed by Bell & Plag (2012). Due to the fact that 

so many compounds occur repeatedly, the data can be analyzed either by compound 

type or by individual token. In this paper we present token-based analyses, since 

these most accurately reflect the within-type variability found in the data.  

3.2 Categories coded  
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With regard to semantics, Plag et al. (2008) coded each token for five properties of a 

constituent or the compound as a whole, e.g. N1 IS A PROPER NOUN, as well as eighteen 

relations between constituents, e.g. N1 HAS N2. Each of these semantic categories was 

coded as a binary factor with the levels yes and no, so that a single token could be 

coded for more than one possible interpretation. Two trained linguists independently 

coded each token, taking into account its context, and tokens were excluded from 

further analysis if these two codings differed. Because we are using only a subset of 

the Plag et al. (2008) data, namely those tokens for which agreed human stress ratings 

are available, an additional restriction to items with agreed semantic codings would 

reduce the dataset to a mere 506 tokens. Furthermore, within these 506 tokens, only 8 

of the 26 semantic classes have more than ten representatives. This greatly reduces the 

power of any statistical analysis involving these variables, whose effects are in any 

case well established, and we therefore decided not to include them in the present 

study. This allows us to use a larger set of data, focusing on the effects of 

informativity, length and constituent identity. Table 2 summarizes the predictors we 

used, and we will discuss each group in turn.  

 

Insert table 2 here 

 

3.2.1 Constituent identity  

Plag (2010) computed the tendency of a particular noun in either N1 or N2 position to 

be associated with a particular stress pattern. Using the same set of 1154 tokens as we 

are using, and the same stress ratings, the proportion of left stresses within each 

positional family was calculated for each token in the dataset. To give an example, 

consider the compound advertising business, which is represented in our dataset by a 
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single token. There are six more tokens in the data that have the same left constituent, 

one each of advertising agency, advertising battle, advertising commentator, advertising 

costs, advertising days and advertising dollars. Of these seven tokens, only the token of 

advertising battle is rightward-stressed. For the token of advertising business, the left 

constituent bias for leftward stress is therefore calculated as 5/6, i.e. 0.833, because 

five of the other six tokens have leftward stress. Similarly, there are two more tokens 

in the data that have business in N2 position, one each of biotechnology business and 

computer business. Of the three tokens that share this constituent, only computer 

business is coded for rightward stress. For the token of advertising business, the right 

constituent bias for leftward stress is therefore calculated as 1/2, i.e. 0.5, because only 

one of the other two tokens has leftward stress. Note that by using this procedure, the 

stress of the token in question is not taken into account when computing the family 

biases for that token. This is done in order to avoid the problem of predicting the 

stress of an item on the basis of stress information gleaned from that very item. Plag 

(2010) transformed these proportional biases into a categorical variable with the 

values left bias, right bias and neutral, however we will follow Plag & Kunter (2010) 

in using the untransformed proportions, in order not to lose information about the 

degree of variability in the data. Plag & Kunter (ibid.) standardized these proportions 

to reduce the danger of collinearity adversely affecting their models. We also did this, 

but it turned out to make no difference to any of the analyses, and so the models we 

describe here use the raw biases.  

3.2.2 Lexicalization  

As a measure of lexicalization, Plag et al. (2008) coded the data for compound 

frequency. Because many of the compounds in the BU corpus are low frequency items 
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relating to particular news stories, they do not occur in standard corpora, and so it 

was necessary to obtain frequencies from the internet. This was done using Query 

Google (Hayes & Ma 2003-) to extract word counts automatically using the Google 

search engine, with the searches restricted to English language webpages. The Google 

frequencies provided by Plag et al. (ibid.) are lemmatized, i.e. summed over all 

inflectional forms, and include all spelling variants (one word, hyphenated and two 

words). Plag et al. (2007) demonstrate that frequencies obtained in this way are 

reliably correlated with frequencies obtained from the Cobuild corpus, a balanced 

corpus of 18 million words.  

3.2.3 Informativity  

As described in Section 2.4, Bell & Plag (2012) used two types of measure to estimate 

the informativity and relative informativity of N2: semantic specificity, based on 

synset counts, and probability of occurrence, based on positional family sizes. To 

ensure direct comparability with that study, we will use the same measures here. 

Synset counts were manually extracted from the WordNet index file for nouns, for all 

values of N1 and N2 in the data. In the few cases where a constituent did not appear 

in WordNet, any compound with that constituent was removed from the data: this 

reduced the dataset to 1075 tokens. For the estimation of family sizes we used COCA, 

The Corpus of Contemporary American English (Davies 2008-), accessed in the fall of 

2009. We searched for spaced noun-noun collocates in which the relevant values of 

N1 or N2 occurred in first or second position respectively. Such an automated 

procedure generates many items that are not actually compounds, but time 

constraints made it impossible to check every hit. However, as shown in Bell (2013) 

and Bell & Plag (2012), using a manually corrected sample, the numbers of hits 
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returned by such automated searches are highly correlated with actual family sizes 

obtained by manual checking. The number of types returned by a search was 

therefore taken to represent the positional family size for that constituent. There were 

a few constituents that did not have families in COCA, and so compounds with these 

constituents were excluded from subsequent analysis, further reducing the dataset to 

1056 tokens.  

3.2.4 Length  

Plag et al. (2008) coded the syllable structure of every noun-noun compound token 

from the BU corpus: each syllable was classed as either W or S, where S represented 

the main stressed syllable of a constituent (secondary stress was not coded). For one 

token of deputy superintendent, for example, N1 (deputy) was coded as SWW and N2 

(superintendent) as WWWSW. For the present study, we used this information to 

calculate a number of measurements of constituent or compound length. These were: 

the number of syllables in N1, the number of syllables in N2, the total number of 

syllables and the number of syllables after the main stressed syllable of N1. Initial 

exploratory analyses indicated that all of these measures were predictive of 

prominence placement, but that the latter was the most successful predictor. Bell & 

Plag (2012) also found that, for their BNC data, the length measure that produced the 

best and most interpretable models was the number of syllables after N1 main stress. 

For left-stressed compounds, this variable can be conceptualized as a measure of the 

length of the unaccented ‘tail’ following the main stress (see Bell & Plag 2012: 510). To 

illustrate the coding, consider the token of deputy superintendent mentioned above. For 

this token, the number of syllables after N1 main stress is seven. However, because 

each token was coded separately, the number is not necessarily constant for all tokens 
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of the same compound. In the case of magazine subscription, for example, some tokens 

are produced with the main stress of magazine on the first syllable, while others have it 

on the final syllable. The number of syllables after N1 main stress for magazine 

subscription is therefore three for some tokens and five for others. 

 
3.3 Statistical analysis  

For the statistical analysis we carried out mixed effects regression modeling (e.g. 

Baayen et al. 2008) using the lme4 package (Bates et al. 2011) in the R statistical 

programming environment (R Development Core Team 2011). In regression analysis, 

the outcome of a dependent variable, in this case stress pattern, is predicted on the 

basis of independent predictor variables, in this case informativity, length and so on. 

Multiple regression has the advantage of showing the effect of one predictor while 

holding all others constant, which is especially welcome for an investigation like this 

one, where many different variables seem to play a role at the same time. The further 

advantage of mixed effects modeling is that both fixed and random effects can be 

included as predictors. A fixed effect is one that can be generalized from a sample to a 

population: for example, if it is shown that the more frequent a compound in our 

dataset, the more likely it is to have left stress, then we can predict the stress pattern of 

new compounds on the basis of their frequency. Random effects, on the other hand, 

are not generalizable: for example, certain speakers may have a tendency to prefer 

one stress pattern over another, but knowing the idiosyncratic preferences of our 

particular subjects would not enable us to predict the preferences of a new group. In 

our analyses we therefore include SPEAKER as a random effect, with the variables 

described in Section 3.2 as fixed-effect predictors. Including speaker as a random 

effect instructs the algorithm to take into account the relative tendencies of the 
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different speakers towards one stress pattern or the other. As a precaution against the 

potentially harmful effects of extreme values on our statistical models, compound 

frequencies and all measures of informativeness were first logarithmatized. We then 

applied the usual procedure of step-wise elimination of non-significant variables to 

arrive at our final models.  

4 Results  

In this section we will present the results of various analyses, in which different 

constellations of variables are used as predictors. This is done in order to explore the 

individual contributions of the different predictors and the relationships between 

them. The variables we are most interested in are informativity and constituent 

identity, and these are therefore the main focus of our discussion. In addition, all the 

analyses include length and lexicalization measures as control variables. Although we 

do not discuss these in great detail, we do find effects of length and of lexicalization in 

all our models, and in the predicted directions. We will first present the results of an 

analysis that has, apart from these control variables, only informativity measures as 

predictors, in order to attempt to replicate the results of Bell & Plag (2012).  

4.1 Informativity as a predictor of compound stress  

Our initial model included the following informativity measures: family size of N2, 

conditional probability of N2, and synset counts for N1 and N2. We find main effects 

for the two probability-based measures but no significant effect for the synsets, and no 

interactions. The final model, after elimination of the insignificant variables, is given 

in table 3. Positive coefficients indicate a tendency towards rightward stress, negative 

ones towards left stress. C is a measure of the discriminative power of a logistic 
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regression model, i.e. of the degree of agreement between observed outcomes and the 

probabilities computed by the model. The possible values of C range from 0.5 to 1.0, 

where 1.0 indicates that the model always assigns higher probability to the outcome 

actually observed than to the alternative outcome. Standardly, values of 0.9 or more 

indicate an excellent fit between the model and the data, and values between 0.8 and 

0.9 indicate a good fit (see, for example, Kutner et al. 2005 for details). Our figure of 

0.821 therefore indicates that the model is quite successful in its predictions. In fact, 

this C-value is remarkably similar to that of the best model reported in Plag (2010), C 

= 0.828, even though the latter was based on a different set of predictors, namely 

constituent identity, semantics and spelling.  

Insert table 3 here 

 

The effects are plotted in Figure 1. In the top row we find the effects of our control 

variables, as predicted. The longer the compound, the higher the probability of it 

receiving an accent on N2, and the more frequent the compound, the more prone to 

left stress it will be. The bottom two plots in Figure 1 show the informativity effects. 

The bottom left plot and the bottom right plot show that the more expected N2 is, 

either conditioned by N1 or by itself, respectively, the less likely it is that N2 receives 

stress. This is in accordance with the hypothesis that prominence is at least partly 

determined by informativity.  

 
Place figure 1 about here 
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Notably, in the presence of the frequency-based informativity measures, semantic 

specificity as gauged by the synset counts is not significant. In order to investigate the 

role of semantic specificity and the relationship between the two kinds of 

informativity variables a bit further, we fitted a model from which the family size 

measures were excluded. After model simplification, the two control variables from 

above and both measures of semantic specificity were highly significant in the 

predicted directions, with no interaction (for N1: p=0.000151, z=3.789, for N2: 

p=0.005188, z=-2.795). The two semantic specificity effects in this model are plotted in 

Figure 2. The left-hand panel shows that the larger the N1 synset count, i.e. the less 

specific N1, the higher the probability of an accent on N2. This is consistent with the 

hypothesis that as N1 becomes less informative, N2 becomes more informative 

relative to N1, and is therefore more likely to be accented. The right-hand panel 

shows that the larger the synset count of N2, i.e. the less specific N2, the less likely it is 

to receive an accent. Again, this is consistent with the hypothesis that prominence is 

determined by the informativeness of N2. This model is not quite as successful as the 

one based on family sizes, but is still quite good in its predictions (C=0.792). The fact 

that the synset counts do not emerge as significant predictors in the presence of the 

probability-based variables indicates that the synset effects are preempted by the 

family sizes. This in turn suggests that the two types of measure account for the same 

portion of variation in the dependent variable, and may indeed represent the same 

underlying phenomenon, namely informativity.  

Place figure 2 about here 
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To summarize, these analyses have provided robust evidence for an effect of 

informativity on compound stress assignment. This nicely replicates Bell & Plag’s 

(2012) findings with a different dataset. Let us now turn to the question of whether 

informativity effects survive when constituent identity is also included as a predictor.  

4.2 Constituent identity and informativity as predictors  

To test whether constituent identity and informativity are predictive of stress pattern 

in the presence of each other, we fitted a model with both types of predictor in 

addition to the same control variables as above. The final model is documented in 

table 4. There are significant main effects for length, compound frequency, both 

constituent biases and one measure of informativity, namely the conditional 

probability of N2. Figure 3 shows these significant effects. As before, we see that 

longer compounds are more likely to have right prominence while more frequent 

compounds are more prone to left prominence. The effect of the conditional 

probability of N2 is also unchanged: the less likely N2 given N1, the more likely it is to 

receive stress. Both constituent bias effects also work in the expected direction: as the 

bias of either constituent for left stress increases, the probability of an accent on N2 

falls. With the inclusion of the constituent biases, the predictive power of the model is 

improved (C=0.855).  

 

Insert table 4 here 

Place figure 3 about here 
 

Taken at face value, these results suggest that a constituent’s informativity and its 

bias for a particular stress pattern are to some extent independent of one another. 

However, a moment’s thought reveals that this would be surprising. Let us first 
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consider the nature of the constituent identity effect. In our models, it is based on the 

constituent family bias, which we compute using orthographic representations of the 

compounds in our dataset. In other words, it is the tendency of a particular 

orthographic string in either N1 or N2 position to be associated with a particular 

stress pattern. Most obviously, orthographic strings represent phonological strings, 

but there is ample psycholinguistic evidence that in the mental lexicon each string is 

also associated with many other properties including, for example, semantics, length, 

frequency and positional family sizes (e.g. Schreuder & Baayen 1997, Bertram et al. 

2000, Moscoso del Prado Martín et al. 2004). In other words, constituent identity can 

be seen as a proxy for a bundle of variables, some of which may have an influence on 

stress assignment. For example, as shown by Plag et al. (2008), geographical terms in 

N2 position predispose a compound to right stress, and geographical terms will 

therefore tend to have relatively low N2 biases for left stress. Similarly, as shown in 

this and the preceding section, a noun that modifies few other nouns, i.e. has a low N1 

family size (resulting in high conditional probability of N2), predisposes a compound 

to left stress when it occurs in N1 position. Nouns with low N1 family sizes will 

therefore tend to have relatively high N1 biases for left stress. In fact, any property of 

a constituent that is predictive of stress placement will automatically contribute to 

that constituent’s bias towards a particular pattern. 

Since informativity is taken here to be a property of individual constituents, and is 

computed using constituent-based variables in our models, any effect of 

informativeness on stress will contribute to and even give rise to a constituent identity 

effect: more informative constituents in N1 position will have greater N1 biases for 

left stress, while more informative constituents in N2 position will have lower N2 

biases for left stress. Whether the constituent family bias indeed incorporates other 



24 
 

constituent-related measures can be tested empirically. Thus, it should be possible to 

predict the stress bias of a given constituent on the basis of other known properties of 

that constituent, including its informativity. This will be done in the next subsection.  

4.3 Constituent identity and informativity as related measures  

In order to test whether informativity and other constituent properties underlie the 

constituent identity effect, we fitted two regression models: one with the constituent 

family bias of N1 as the dependent variable, the other with the constituent family bias 

of N2 as the dependent variable. The independent variables were all coded predictors 

related to N1 or N2, respectively. For N2 bias, the predictors were the length of N2 in 

syllables, the positional family size of N2, and its synset count. For N1 bias, the 

predictors were the number of syllables in N1 after the main stressed syllable, the 

conditional probability of N2 (i.e. 1/positional family size of N1), and the synset 

count of N1. We expected to find significant effects for at least some of these 

predictors. Our final models are shown in table 5 for N1, and table 6 for N2, with the 

corresponding graphs in figure 4.  

Insert tables 5 and 6 here 

Place figure 4 about here 

It can be seen that for both constituents, length and informativeness are significant 

predictors of stress bias. For each constituent, an increase in length is associated with 

a decrease in bias for left stress, reflecting the fact that longer compounds tend to be 

right stressed. In the case of N1, the effect of informativity is represented by 

conditional probability: the more likely is N2 given N1, the greater the N1 bias for left 
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stress, as predicted by our hypothesis. For N2, the effect of informativity is 

represented by its synset count: the greater the synset count, i.e. the less semantically 

specific N2 is, the greater its bias for left stress, as expected. The low values of 

R-squared for these models indicate that they would not be very successful at 

predicting the stress bias of new items, presumably because various other significant 

predictors are missing from the analyses. At the very least, semantic information 

would need to be added since, as discussed in section 2.1, it is clear that some 

semantic categories are likely to affect bias. Nevertheless, despite the fact that some 

other predictors are missing, there is clear evidence that both length and informativity 

contribute significantly to the effect of constituent identity on compound stress.  

If indeed it does subsume all other constituent-based predictors, then it is not 

surprising that constituent identity is consistently found to be the most reliable and 

significant predictor of compound stress. More surprising, if informativeness is one of 

the factors underlying bias, is the fact that conditional probability of N2 emerges as a 

significant predictor of stress, even when the constituent biases are also included in 

the model. However, it should be remembered that the bias and informativity 

measurements used in our analyses are only very rough approximations to what 

might be found in the mind of any given speaker. Our constituent family biases, in 

particular, were calculated on the basis of only 1154 tokens (those for which we have 

agreed stress ratings), and may therefore be even less reliable than the family sizes, 

which were computed from the much larger families extracted from COCA.  

In order to further explore the constituent identity effect, we fitted a model with 

N1 and N2 as random effects (Baayen et al. 2008). In the same way that including 

speaker as a random effect allows us to jointly model a range of factors including sex, 

age, L1 dialect, education and so on, including N1 and N2 as random effects allows us 
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to combine a host of variables, including but not restricted to semantics, phonology, 

structure, distribution and frequency. In a model of compound stress that includes N1 

and N2 as random effects, the model takes into account the tendencies of each 

compound’s N1 and N2 to be associated with particular stress patterns in the data. 

And although this is effectively what the constituent family bias also does, we might 

expect the model with random effects to be even more successful in its predictions. 

This is because the possible values of family bias are limited by the number of 

compounds in the family: in a family of five compounds, for example, the possible 

values are 0, .25, .5, .75 and 1.0. This means that constituents with the same family size 

are restricted to the same possible values of bias. The random effects, in contrast, can 

be different for every N1 and N2 in the data, so that the resulting model can fit the 

data much more closely. 

Based on these considerations we fitted a mixed effects model to our data, with 

stress position as the dependent variable and speaker, N1 and N2 as random effects. 

The resulting model has an extremely high C value of 0.960, which is not improved by 

the addition of any of the fixed effects discussed above. Furthermore, removing the 

random effect of speaker only slightly reduces the C-value, to 0.956. This suggests that 

nearly all the stress variation in our data can be accounted for in terms of the 

tendencies of the two constituents to be associated with one stress pattern or the 

other. In other words, for the model to correctly assign stress to almost any compound 

in the dataset, the only information needed is how other compounds are stressed that 

share a constituent with the compound in question.  

The success of the random-effects model supports our hypothesis that the effect of 

constituent identity on stress subsumes those of family size, synset count and length. 

However, it also begs the question as to whether, in the mental lexicon too, stress is 
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assigned purely on the basis of constituent identity: in other words, whether the 

observed effects of informativity and semantics are simply side-effects of the 

constituent identity effect. In fact, this is very unlikely to be the case. If stress were 

assigned only on the basis of constituent identity, there is no particular reason why 

constituents with similar levels of informativity or with similar semantics should 

cluster together, and so there would be no way of explaining the well-established 

correlations between semantic classes and stress position, or of explaining the effects 

of informativity that we have confirmed in this paper. While an effect of constituent 

informativity on stress will automatically give rise to constituent identity effects like 

the family stress bias, as discussed in section 4.2, the reverse is not true: biases based 

only on constituent identity would not automatically produce an informativity effect.  

 
5 Discussion and Conclusion  

In this paper we have investigated the role of informativity as a determinant of 

compound stress assignment in English and explored its relationship to other 

predictors. The results of our analyses replicate the informativity effects found by Bell 

& Plag (2012) for a different set of data, and therefore lend further support to the idea 

that informativity is indeed predictive of stress. Compounds with a relatively 

informative second constituent are more likely to be right stressed than compounds 

with a less informative second constituent. This result, while in line with that of Bell 

(2013) and Bell & Plag (2012), contradicts the findings by Plag & Kunter (2010), who 

used the same set of compounds as we have done, but did not find an informativity 

effect. However, they used only one informativity measure, family size, and this was 

based on constituent families derived from a rather small corpus: our results suggest 

that this corpus was too small to produce useful estimates of family size. In contrast, 
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COCA provides more representative family sizes, which, as we have demonstrated, 

lead to the expected informativity effects in the statistical models.  

The present study also investigated the relationship between constituent identity 

effects and informativity. Our analysis confirmed previous findings that constituent 

identity is the strongest single predictor of compound stress pattern (e.g. Plag 2010, 

Arndt-Lappe 2011). However, we also saw that that the two types of measure are not 

independent of each other, and that a constituent’s stress bias can be partially 

predicted by its informativeness. This raises the question as to how we can 

understand the relationship between constituent identity and informativity as 

predictors of compound stress.  

Let us start with the general principle that more informative elements are stressed. 

Given this principle, it is possible to hypothesize how other observed effects, in 

particular the constituent identity effect, might arise as a result. Recall that any 

constituent whose informativity exerts an influence on prominence will exert this 

influence not only in the compound one happens to look at, but in all its compounds, 

i.e. in its whole family. Thus, informativity directly translates into a constituent family 

bias towards a particular kind of stress.  

This in turn raises the question as to why, if a constituent’s stress bias is based on 

informativity, it should be more highly predictive than the property from which it 

derives. At this point we need to remind ourselves that the informativity 

measurements we are using can only be imperfect approximations to the information 

content of any particular token in the mind of a speaker. For example, using synset 

count to estimate semantic specificity can only provide a crude estimate of what is 

likely in reality to be a highly complex property. Furthermore, our family sizes, 

though based on a fairly large corpus, can only approximate to actual probabilities of 
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occurrence, not least because they only take into account bigram probabilities. In 

reality, the informativity of a particular constituent token will depend not only on its 

immediate neighbour in the compound, but also on that constituent’s distribution 

with respect to the wider syntactic and discourse context, as well the encyclopedic 

knowledge of the speaker and listener. So it could be that constituent identity is 

actually a better approximation to informativity than our rather imperfect 

measurements of semantic specificity and family size.  

Constituent identity embodies a whole range of other lexical properties, some of 

which are known to be predictive of stress placement and may themselves be related 

to informativity. For example, our results demonstrate that constituent length is a 

strong predictor both of compound prominence and of constituent stress bias; but 

constituent length itself can be predicted on the basis of informativity. Piantadosi et al. 

(2011) show that, across a range of languages, information content is a very reliable 

predictor of word length, much better even than frequency, whether length is 

measured in terms of letters, syllables or phonemes. The longer a word the more 

informative it is. It is therefore possible that the very strong effects of length that we 

see in our data, which replicate those found by Bell (2013) and Bell & Plag (2012) for 

the BNC, are in fact related to informativity. 

Where the length of N2 is concerned, it is clear how its effect on prominence could 

result from informativity: the longer N2, the more informative it is and therefore the 

more likely to be stressed. However, recall that, although the length of N2 is a strong 

predictor of prominence, we found that the number of syllables after the main stress 

of N1 was an even better predictor. This measure clearly makes reference to the 

phonological structure of N1 as well as to the length of N2, and its effect on 

prominence is therefore more difficult to explain in terms of informativity. Another 
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possible explanation is that there is a phonological constraint against long strings of 

unaccented syllables (cf. Ladd 2008: 244) and we do not preclude the possibility that 

such an effect operates in addition to an informativity-mediated effect of N2 length. 

How exactly the relationship between these effects can be modeled and better 

understood is a matter for future research.  

The informativity principle might also underlie the known semantic effects on 

compound stress. Let us first consider the semantic properties of N1 and N2. Tarasova 

(2012: 55-56) shows that, for English simplex nouns, their positional family size in N1 

position is inversely correlated with their positional family size in N2 position. In 

other words, some nouns tend to occur in compounds mainly as the left-hand 

constituent, while others occur mainly as the right-hand constituent (see also Baayen 

2010 for a similar finding). It is plausible that the preference of a noun for one position 

or the other is associated with its semantic properties. 

Fanselow (1981: 156, 174ff, 192ff) argues for a semantic classification of compounds 

into those that show basic relations (GRUNDRELATIONEN) and those that show 

stereotypical relations (STEREOTYPENRELATIONEN). Basic relations arise from basic 

properties common to all things: size, shape, location, material etc., whereas 

stereotypical relations arise from the stereotypes represented by particular nouns. We 

might hypothesize that nouns that represent basic properties such as material, size or 

location are likely both to have a preference for N1 position and to have large N1 

family sizes: their semantics as fairly general modifiers will make it possible for them 

to modify a large number of head nouns. If it is true that semantic classes associated 

with basic relations do have large N1 family sizes and also tend to be associated with 

rightward stress, then informativity can account for the correlation of semantic class 

with stress type. This correlation has been recognized as a conundrum in earlier 
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studies, and the informativity approach opens up new avenues of research into this 

problem.  

Informativity could also underlie the effects on stress of particular semantic 

relations between N1 and N2. Tarasova (2012: 57-59) shows that the greater a noun’s 

family size, either in N1 or N2 position, the greater its tendency to be associated with 

a particular semantic relation. What is not clear, is whether nouns with large N1 

families tend to favor a particular set of relations, while those with large N2 families 

favor a different set. If it turns out that large N1 family size is generally associated 

with relations favoring right prominence, while large N2 family size is associated 

with different relations, then informativity might account for the effects of semantic 

relation on stress. Semantic relations known to predict right prominence would do so 

because they are associated with N1 constituents that have large family sizes and thus 

render N2 relatively informative. Similarly, relations known to favor left prominence 

would do so because they are associated with N2 constituents that have large families 

and are therefore relatively uninformative. On the other hand, if there sometimes 

turns out to be a mismatch between the stress pattern predicted by the family size and 

that predicted by the semantic relation, then these conflicting pressures could give 

rise to some of the within-type variability found in natural data.  

A limitation of our models is that our measures of informativity are based on 

orthographic representations of the constituents. This makes them rather crude, since 

they can take no account of the polysemy or even homonymy of individual 

constituents. For example, savings bank, merchant bank, river bank and canal bank would 

all be counted as members of the same N2 positional constituent family, even though 

bank clearly has a different meaning in savings bank and merchant bank than it does in 

river bank and canal bank. However, with more sophisticated measures of 
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informativity, it would be possible to distinguish between the different readings of a 

given constituent, for example by calculating family sizes based on particular 

readings.  

Such more sophisticated measures might also be able to account for well-known 

pairs such as tóy factory vs. toy fáctory, where different stress patterns coincide with 

different semantic interpretations: tóy factory is generally taken to mean ‘a factory for 

making toys’ while toy fáctory is ‘a model factory that is a toy’ (see Bell 2013 for 

empirical evidence of this). When toy factory means ‘a factory for making toys’, the 

constituent factory has its core meaning of ‘a building with machinery for the 

manufacture of goods’. With this meaning it can occur in N2 position with a wide 

variety of nouns in N1 position, reflecting the wide variety of goods that can be 

manufactured in a factory. This large N2 family makes factory relatively 

uninformative, so the left-stress pattern associated with this reading is to be expected. 

On the other hand, when toy factory means ‘a model factory that is a toy’, factory has 

undergone a metonymic shift to mean ‘a model of a factory’. With this metonymic 

meaning one would assume that it would have a much smaller family size, since 

world knowledge suggests that there are fewer potential values of N1 that would 

make sense. This small family would make factory with this metonymic reading 

relatively informative, so that the attested rightward stress is again expected. In other 

words, the two stress patterns would fall out from informativity.  

An exploratory empirical analysis suggests that this explanation is on the right 

track. Again using COCA, we checked in context every token of the fifty most 

frequent NN compounds with factory as N2. In forty-six of these types, the constituent 

factory was used exclusively with its core meaning, e.g. shoe factory, paint factory, 

munitions factory. Only in the remaining four types, namely dream factory, hit factory, 



33 
 

idea factory and soul factory, did it occur with a different reading. These attested 

minority readings all show the same kind of semantic extension of factory to mean 

'institution producing N1', and there is not a single attestation of the metonymic 

reading 'model of a factory'. This patterning of the data constitutes evidence for the 

idea developed here that a semantically more fine-grained measure of informativity 

could indeed account for minimal stress pairs that show a semantic contrast. 

Let us turn to another implication of our findings. The fact that informativity is 

highly influential in determining compound prominence speaks for an analysis of 

compound stress as an intonational phenomenon, rather than one of lexical stress 

assignment. This means that, at the theoretical level, compound prominence needs to 

be integrated into a more general account of the larger prosodic organization of 

utterances. This integration could be framed in different ways. Using the terminology 

of Calhoun (2010: 2), two alternative frameworks would be the PITCH-ACCENTING 

APPROACH (e.g. Bolinger 1965, Rochemont 1986, Selkirk 1995, Gussenhoven 2004) and 

the METRICAL STRESS APPROACH (e.g. Calhoun 2010), but the details of any such 

account would need to be worked out in future research. It should be noted, however, 

that accounts based on intonation would not necessarily be incompatible with one 

based on lexical stress. In psycholinguistically plausible models of the mental lexicon 

(e.g. Libben 2010), with rich and redundant information storage, recurrent patterns of 

prominence would naturally lead to memorized stress patterns for individual 

compounds. Recently, Schweitzer et al. (2011) have provided evidence that prosodic 

realization can indeed be subject to lexicalized entrenchment. 

This in turn has wider implications for general accounts of lexical stress. For many 

words, compound or non-compound, stress information seems to be part of the 

lexical entry (e.g. Cutler 1984). This information, that the verb devíse has stress on the 
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last syllable, for example, can be overridden if informativity considerations arising 

from the surrounding discourse require it. Contrastive stress, on compounds or other 

words, means that in the given context a particular string is extremely informative 

and is thus pronounced with high prominence (perhaps modulo certain metrical 

constraints, see Calhoun 2010), irrespective of its normal level of informativity. 

Utterances such as I said dévise, not révise, or It was an apple cáke, not an apple píe, would 

be cases in point. Returning to our informativity measures, such measures as family 

size should be seen as approximating to a kind of baseline informativity from which 

language use starts. On top of this, discourse can build the actual informativity of 

tokens in context, on the basis of which pitch accents are distributed over utterances. 

A picture therefore emerges in which prosodic realizations based on frequent patterns 

of relative informativeness can become entrenched as lexical (i.e. memorized) stress, 

while at the same time being over-ridable should relative informativeness change in a 

particular context.  

An informativity-based account of compound stress would naturally extend to 

compounds that have more than two constituents. As shown, for example, by 

Giegerich (2009) and Kösling & Plag (2009), stress in triconstituent nominal 

compounds is also highly variable and can fall on any of the three nouns involved. 

Even though they speak of factors other than informativity, Kösling & Plag (2009) 

Kösling (2012) and Kösling et al. (2013) explicitly propose that the same mechanisms 

regulate stress assignment in triconstituent compounds as in those compounds that 

have only two constituents. Bell (2013) builds a variety of models of compound stress 

using a data set that contains both binomial and trinomial compounds. In her models 

these larger compounds do not behave differently from simple NN compounds and 

show the same kinds of informativity effects. It is a matter for future research to 
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replicate these effects for even larger compound structures.  
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Tables 

Table 1: Semantic categories found to influence compound prominence (Plag et  al. 
2007, 2008) 

 

Semantic category Direction of influence 

Semantic property of constituents 
N1 refers to a period or point in time 
N2 is a geographical term 
N1 and N2 form a proper noun 
N1 is a proper noun 
N1 and N2 form a left-headed compound 

rightward stress 
rightward stress 
rightward stress 
rightward stress 
rightward stress 

Semantic relation between constituents 
N1 has N2 
N2 is made of N1 
N1 is N2 
N2 located at N1 
N2 during N1 
N2 is named after N1 
N2 for N1 
N2 uses N1 

rightward stress 
rightward stress 
rightward stress 
rightward stress 
rightward stress 
rightward stress 
leftward stress 
leftward stress 

 
 
 
 

Table 2: Predictors initially present in the analysis 
 

constituent identity: N1 constituent family stress bias 
N2 constituent family stress bias 

lexicalization: compound frequency 
informativity: positional family size of N2 

conditional probability of N2 based on family size of N1 
synset count of N2 
synset count of N1 

length: number of syllables following the main-stressed syllable of N1 
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Table 3: Final model, informativity only, N = 1056 

Random effects 
 Variance Std.Dev.  
Speaker (Intercept) 0.32425 0.56943  
Fixed effects 
 Estimate Std. Error z value Pr(>|z|)  
(Intercept) -4.31557 1.09091 -3.956 7.62e-05 *** 
Syllables after N1 main stress 0.63776 0.06663 9.572 < 2e-16 *** 
Log frequency of NN -0.24864 0.03455 -7.197 6.18e-13 *** 
Log family size of N2 -0.18441 0.09681 -1.905 0.0568 • 
Log conditional probability of N2 -0.88428 0.11064 -7.992 1.32e-15 *** 
Model fit      
C Dxy     
0.8210719 0.6421439     

Significance codes: *** p < .001; ** p < .01; * p < .05; •marginal 

 

 

Table 4: Final model, informativity and family bias, N = 1056 

Random effects 
 Variance Std.Dev.  
speaker (Intercept) 0.26034 0.51024  
Fixed effects 
 Estimate Std. Error z value Pr(>|z|)  
(Intercept) -0.52151 0.97552 -0.535 0.593  
Syllables after N1 main stress 0.35795 0.07455 4.801 1.58e-06 *** 
Log frequency of NN -0.17075 0.03733 -4.574 4.73e-06 *** 
Log conditional probability of N2 -0.49533 0.11748 -4.216 2.48e-05 *** 
N1 bias for left stress -1.75454 0.29579 -5.932 3.00e-09 *** 
N2 bias for left stress -2.25271 0.27438 -8.21 < 2e-16 *** 
Model fit      
C Dxy     
0.8550325 0.7100651     

Significance codes: *** p < .001; ** p < .01; * p < .05; •marginal 
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Table 5: Final model of N1 bias for left stress as predicted by constituent-related 
variables, adjusted R-squared = 0.2404 

 
 Value Std. Error t value Pr(>|t|)  
(Intercept) 1.7269 0.07639 22.61 <2e-16 *** 
N1 Syllables after N1 main stress -0.1792 0.01089 -16.47 <2e-16 *** 
Log conditional probability of N2 0.1275 0.01045 12.20 <2e-16 *** 
 
 
 
 

Table 6: Final model of N2 bias for left stress as predicted by constituent-related 
variables, adjusted R-squared = 0.1753 

 
 Value Std. Error t value Pr(>|t|)  
(Intercept) 0.83868 0.03149 26.631 <2e-16 *** 
N2 Syllables  -0.10949 0.00960 -11.405 <2e-16 *** 
Log synset count of N2 0.06382 0.01169 5.461 5.907e-08 *** 
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Figures 

Figure 1: Partial effects in final model, informativity only 
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Figure 2: Partial effects of synsets, model under exclusion of probability measures 

 
 
 



46 
 

Figure 3: Partial effects for the model with informativity and family bias 
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Figure 4: N1 and N2 family biases, as predicted by the respective constituent-related 
variables 

 


